
Hong-jun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nature Nanotechnology, 2019, 14, 89-97.	15.6	725
2	Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4164-4169.	3.3	617
3	Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano, 2016, 10, 6753-6761.	7.3	461
4	Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery. Journal of the American Chemical Society, 2015, 137, 15217-15224.	6.6	312
5	Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine. Accounts of Chemical Research, 2018, 51, 2848-2856.	7.6	195
6	Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1519.	3.3	180
7	Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nature Biomedical Engineering, 2021, 5, 1038-1047.	11.6	164
8	Macrophage-Specific <i>in Vivo</i> Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles. ACS Nano, 2018, 12, 994-1005.	7.3	163
9	Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3687-3692.	3.3	163
10	Spatial Targeting of Tumor-Associated Macrophages and Tumor Cells with a pH-Sensitive Cluster Nanocarrier for Cancer Chemoimmunotherapy. Nano Letters, 2017, 17, 3822-3829.	4.5	158
11	Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nature Communications, 2018, 9, 4092.	5.8	142
12	Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 2021, 33, e2004172.	11.1	141
13	Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16, 933-941.	15.6	130
14	Cryo-shocked cancer cells for targeted drug delivery and vaccination. Science Advances, 2020, 6, .	4.7	99
15	The effect of surface charge on oral absorption of polymeric nanoparticles. Biomaterials Science, 2018, 6, 642-650.	2.6	96
16	Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery inÂvivo. Biomaterials, 2015, 69, 1-11.	5.7	88
17	Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Accounts of Chemical Research, 2020, 53, 2521-2533.	7.6	81
18	The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials, 2018, 182, 104-113.	5.7	70

Hong-jun Li

#	Article	IF	CITATIONS
19	Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials, 2020, 237, 119782.	5.7	66
20	Optimizing the Size of Micellar Nanoparticles for Efficient siRNA Delivery. Advanced Functional Materials, 2015, 25, 4778-4787.	7.8	64
21	Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29512-29517.	3.3	64
22	Enhanced Primary Tumor Penetration Facilitates Nanoparticle Draining into Lymph Nodes after Systemic Injection for Tumor Metastasis Inhibition. ACS Nano, 2019, 13, 8648-8658.	7.3	55
23	Unraveling the mechanobiology of immune cells. Current Opinion in Biotechnology, 2020, 66, 236-245.	3.3	55
24	Co-inhibition of the TGF-β pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. Biomaterials Science, 2020, 8, 5121-5132.	2.6	50
25	Programmable Delivery of Immune Adjuvant to Tumor-Infiltrating Dendritic Cells for Cancer Immunotherapy. Nano Letters, 2020, 20, 4882-4889.	4.5	50
26	Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials, 2016, 94, 9-19.	5.7	47
27	Chlorin e6-Encapsulated Polyphosphoester Based Nanocarriers with Viscous Flow Core for Effective Treatment of Pancreatic Cancer. ACS Applied Materials & Interfaces, 2015, 7, 18856-18865.	4.0	45
28	Co-delivery of platinum drug and siNotch1 with micelleplex for enhanced hepatocellular carcinoma therapy. Biomaterials, 2015, 70, 71-83.	5.7	43
29	Intratumor Performance and Therapeutic Efficacy of PAMAM Dendrimers Carried by Clustered Nanoparticles. Nano Letters, 2019, 19, 8947-8955.	4.5	41
30	Self-Reporting and Splitting Nanopomegranates Potentiate Deep Tissue Cancer Radiotherapy <i>via</i> Elevated Diffusion and Transcytosis. ACS Nano, 2020, 14, 8459-8472.	7.3	35
31	Adipocyteâ€Derived Anticancer Lipid Droplets. Advanced Materials, 2021, 33, e2100629.	11.1	32
32	Portable air-fed cold atmospheric plasma device for postsurgical cancer treatment. Science Advances, 2021, 7, eabg5686.	4.7	32
33	Delivery Techniques for Enhancing CAR T Cell Therapy against Solid Tumors. Advanced Functional Materials, 2021, 31, 2009489.	7.8	29
34	Injectable Biodegradable Polymeric Complex for Glucose-Responsive Insulin Delivery. ACS Nano, 2021, 15, 4294-4304.	7.3	29
35	Bioorthogonal catalysis for biomedical applications. Trends in Chemistry, 2022, 4, 157-168.	4.4	29
36	Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis. Nano Research, 2018, 11, 2872-2884.	5.8	25

Hong-jun Li

#	Article	IF	CITATIONS
37	Investigation of the in vivo integrity of polymeric micelles via large Stokes shift fluorophore-based FRET. Journal of Controlled Release, 2020, 324, 47-54.	4.8	24
38	Ultrafast charge-conversional nanocarrier for tumor-acidity-activated targeted drug elivery. Biomaterials Science, 2018, 6, 350-355.	2.6	21
39	Leveraging macrophages for cancer theranostics. Advanced Drug Delivery Reviews, 2022, 183, 114136.	6.6	21
40	Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Advances, 2014, 4, 1961-1964.	1.7	20
41	Tailoring the physicochemical properties of nanomaterials for immunomodulation. Advanced Drug Delivery Reviews, 2022, 180, 114039.	6.6	19
42	Delivery strategies in treatments of leukemia. Chemical Society Reviews, 2022, 51, 2121-2144.	18.7	17
43	Multi-stimuli responsive poly(amidoamine) dendrimers with peripheral <i>N</i> -dialkylaminoethyl carbamate moieties. Polymer Chemistry, 2019, 10, 656-662.	1.9	15
44	Leveraging biomaterials for enhancing T cell immunotherapy. Journal of Controlled Release, 2022, 344, 272-288.	4.8	14
45	Cancer Therapy: Adipocyteâ€Derived Anticancer Lipid Droplets (Adv. Mater. 26/2021). Advanced Materials, 2021, 33, 2170198.	11.1	Ο