Eiko Nemitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240844/publications.pdf

Version: 2024-02-01

214 15,075 62 103 g-index

338 338 338 11238

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	4.9	641
2	Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.	4.1	609
3	Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmospheric Chemistry and Physics, 2013, 13, 961-981.	4.9	391
4	Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmospheric Chemistry and Physics, 2010, 10, 647-668.	4.9	366
5	Towards a climate-dependent paradigm of ammonia emission and deposition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130166.	4.0	328
6	Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment, 2001, 35, 4581-4591.	4.1	326
7	Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment, 2007, 41, 8455-8467.	4.1	321
8	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	4.9	308
9	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278
10	Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture, Ecosystems and Environment, 2007, 121, 135-152.	5. 3	262
11	Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmospheric Chemistry and Physics, 2011, 11, 2703-2728.	4.9	254
12	Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmospheric Measurement Techniques, 2010, 3, 91-112.	3.1	215
13	A two-layer canopy compensation point model for describing bi-directional biosphere-atmosphere exchange of ammonia. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 815-833.	2.7	210
14	Organic nitrogen in the atmosphere â€" Where does it come from? A review of sources and methods. Atmospheric Research, 2011, 102, 30-48.	4.1	210
15	Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. Environmental Pollution, 2007, 150, 125-139.	7.5	203
16	Development of resistance models to describe measurements of bi-directional ammonia surface–atmosphere exchange. Atmospheric Environment, 1998, 32, 473-480.	4.1	188
17	Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere. Atmospheric Chemistry and Physics, 2010, 10, 10359-10386.	4.9	187
18	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters, 2016, 43, 7735-7744.	4.0	182

#	Article	IF	CITATIONS
19	Micrometeorological Measurements of the Urban Heat Budget and CO2Emissions on a City Scale. Environmental Science & Environmen	10.0	168
20	Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 2015, 15, 13849-13893.	4.9	168
21	Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	166
22	Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18447-18451.	7.1	161
23	Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmospheric Chemistry and Physics, 2011, 11, 2111-2125.	4.9	140
24	A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 42.	1.6	138
25	Resistance modelling of ammonia exchange over oilseed rape. Agricultural and Forest Meteorology, 2000, 105, 405-425.	4.8	131
26	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmospheric Chemistry and Physics, 2010, 10, 169-199.	4.9	130
27	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions. Atmospheric Chemistry and Physics, 2012, 12, 3065-3114.	4.9	124
28	Biotic, Abiotic, and Management Controls on the Net Ecosystem CO2 Exchange of European Mountain Grassland Ecosystems. Ecosystems, 2008, 11, 1338-1351.	3.4	122
29	Turbulent Flow at 190Âm Height Above London During 2006–2008: A Climatology and the Applicability of Similarity Theory. Boundary-Layer Meteorology, 2010, 137, 77-96.	2.3	121
30	Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. Atmospheric Chemistry and Physics, 2010, 10, 8391-8412.	4.9	119
31	The cycling of organic nitrogen through the atmosphere. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130115.	4.0	119
32	Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: Results from the CELTIC field study. Journal of Geophysical Research, 2005, 110, .	3.3	117
33	Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange. Biogeosciences, 2013, 10, 5183-5225.	3.3	116
34	The bi-directional exchange of oxygenated VOCs between a loblolly pine (<l>Pinus) Tj ETQq0 0 0 3015-3031.</l>	rgBT /Ove 4.9	rlock 10 Tf 50 109
35	Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOyto a coniferous forest. Journal of Geophysical Research, 2006, 111, .	3.3	107
36	An Eddy-Covariance System for the Measurement of Surface/Atmosphere Exchange Fluxes of Submicron Aerosol Chemical Species—First Application Above an Urban Area. Aerosol Science and Technology, 2008, 42, 636-657.	3.1	107

#	Article	IF	CITATIONS
37	Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bulletin of the American Meteorological Society, 2015, 96, 779-804.	3.3	105
38	Biosphere–atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets. Agriculture, Ecosystems and Environment, 2009, 133, 139-149.	5.3	104
39	Direct measurements and parameterisation of aerosol flux, concentration and emission velocity above a city. Atmospheric Environment, 2002, 36, 791-800.	4.1	102
40	Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition. Journal of Geophysical Research, 2002, 107, AAC 8-1.	3.3	101
41	Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH ₃ , SO ₂ , HNO ₃ and HCl. Atmospheric Chemistry and Physics, 2004, 4, 989-1005.	4.9	101
42	Sources and sinks of ammonia within an oilseed rape canopy. Agricultural and Forest Meteorology, 2000, 105, 385-404.	4.8	99
43	Controls of carbon dioxide concentrations and fluxes above central London. Atmospheric Chemistry and Physics, 2011, 11, 1913-1928.	4.9	96
44	Evaluation of Laser Absorption Spectroscopic Techniques for Eddy Covariance Flux Measurements of Ammonia. Environmental Science & Eddy Covariance Flux Measurements of Ammonia. Environmental Science & Eddy Covariance Flux Measurements of Ammonia.	10.0	95
45	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
46	Estimating the reduction of urban PM10 concentrations by trees within an environmental information system for planners. Journal of Environmental Management, 2007, 85, 44-58.	7.8	90
47	Fluxes and concentrations of volatile organic compounds above central London, UK. Atmospheric Chemistry and Physics, 2010, 10, 627-645.	4.9	87
48	A chronology of global air quality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190314.	3.4	87
49	Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK). Atmospheric Chemistry and Physics, 2009, 9, 1971-1987.	4.9	84
50	Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmospheric Chemistry and Physics, 2011, 11, 8995-9017.	4.9	82
51	Sub-Antarctic marine aerosol: dominant contributions from biogenic sources. Atmospheric Chemistry and Physics, 2013, 13, 8669-8694.	4.9	82
52	Cloud Activating Properties of Aerosol Observed during CELTIC. Journals of the Atmospheric Sciences, 2007, 64, 441-459.	1.7	81
53	European scale application of atmospheric reactive nitrogen measurements in a low-cost approach to infer dry deposition fluxes. Agriculture, Ecosystems and Environment, 2009, 133, 183-195.	5.3	81
54	Nitrous oxide emissions from managed grassland: a comparison of eddy covariance and static chamber measurements. Atmospheric Measurement Techniques, 2011, 4, 2179-2194.	3.1	81

#	Article	IF	Citations
55	Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection. Atmospheric Measurement Techniques, 2015, 8, 4197-4213.	3.1	80
56	Title is missing!. Plant and Soil, 2001, 228, 131-145.	3.7	79
57	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	9.9	79
58	An Automated Analyzer to Measure Surface-Atmosphere Exchange Fluxes of Water Soluble Inorganic Aerosol Compounds and Reactive Trace Gases. Environmental Science & Environmental Science & 2009, 43, 1412-1418.	10.0	78
59	Effects of land use on surface–atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3196-3209.	4.0	78
60	Measuring Aerosol and Heavy Metal Deposition on Urban Woodland and Grass Using Inventories of 210Pb and Metal Concentrations in Soil. Water, Air and Soil Pollution, 2004, 4, 483-499.	0.8	76
61	Drivers of long-term variability in CO ₂ net ecosystem exchange in a temperate peatland. Biogeosciences, 2015, 12, 1799-1811.	3.3	75
62	Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. Atmospheric Chemistry and Physics, 2015, 15, 11291-11309.	4.9	71
63	Micrometeorological measurements of particle deposition velocities to moorland vegetation. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 2281-2300.	2.7	70
64	Gas-particle interactions above a Dutch heathland: II. Concentrations and surface exchange fluxes of atmospheric particles. Atmospheric Chemistry and Physics, 2004, 4, 1007-1024.	4.9	70
65	Estimation of In-Canopy Ammonia Sources and Sinks in a Fertilized <i>Zea mays</i> Field. Environmental Science & Environmental	10.0	70
66	Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmospheric Chemistry and Physics, 2016, 16, 10543-10557.	4.9	70
67	The sensitivities of emissions reductions for the mitigation of UK PM _{2.5} . Atmospheric Chemistry and Physics, 2016, 16, 265-276.	4.9	70
68	Stomatal compensation points for ammonia in oilseed rape plants under field conditions. Agricultural and Forest Meteorology, 2000, 105, 371-383.	4.8	68
69	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2014, 14, 9061-9076.	4.9	68
70	Standardisation of eddy-covariance flux measurements of methane and nitrous oxide. International Agrophysics, 2018, 32, 517-549.	1.7	66
71	Title is missing!. Plant and Soil, 2001, 228, 117-129.	3.7	65
72	Night-time chemistry above London: measurements of NO ₃ and N ₂ from the BT Tower. Atmospheric Chemistry and Physics, 2010, 10, 9781-9795.	4.9	65

#	Article	IF	Citations
73	Modeling the surface–atmosphere exchange of ammonia. Atmospheric Environment, 2010, 44, 945-957.	4.1	65
74	Gas-particle interactions above a Dutch heathland: III. Modelling the influence of the NH ₃ -NH ₃ -NH <sequilibrium 1025-1045.<="" 2004,="" 4,="" and="" atmospheric="" chemistry="" fluxes.="" on="" particle="" physics,="" size-segregated="" td=""><td>sub&a9np;g</td><td>gt;4&amp;lt;/su</td></sequilibrium>	sub &a9 np;g	gt;4 &a mp;lt;/su
75	Real-time aerosol mass spectrometry with millisecond resolution. International Journal of Mass Spectrometry, 2011, 303, 15-26.	1.5	63
76	SURFATM-NH3: a model combining the surface energy balance and bi-directional exchanges of ammonia applied at the field scale. Biogeosciences, 2009, 6, 1371-1388.	3.3	61
77	Modelling the dynamic chemical interactions of atmospheric ammonia with leaf surface wetness in a managed grassland canopy. Biogeosciences, 2009, 6, 67-84.	3.3	61
78	Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for LondonÂ(ClearfLo) campaign. Atmospheric Chemistry and Physics, 2016, 16, 6453-6473.	4.9	60
79	Modelling atmospheric mercury transport and deposition across Europe and the UK. Atmospheric Environment, 2001, 35, 5455-5466.	4.1	59
80	Ground-level ozone influenced by circadian control of isoprene emissions. Nature Geoscience, 2011, 4, 671-674.	12.9	59
81	Ammonia emissions from seabird colonies. Geophysical Research Letters, 2007, 34, .	4.0	58
82	Large estragole fluxes from oil palms in Borneo. Atmospheric Chemistry and Physics, 2010, 10, 4343-4358.	4.9	58
83	Nitrogen as a threat to the European greenhouse balance. , 2011, , 434-462.		58
84	Lessons learnt from the first EMEP intensive measurement periods. Atmospheric Chemistry and Physics, 2012, 12, 8073-8094.	4.9	58
85	Dynamics of ammonia exchange with cut grassland: synthesis of results and conclusions of the GRAMINAE Integrated Experiment. Biogeosciences, 2009, 6, 2907-2934.	3.3	55
86	Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems: a review. International Agrophysics, 2018, 32, 439-455.	1.7	55
87	Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate. Biogeosciences, 2013, 10, 1231-1241.	3.3	54
88	Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS. Atmospheric Measurement Techniques, 2019, 12, 6193-6208.	3.1	53
89	Measuring Eddy Covariance Fluxes of Ammonia Using Tunable Diode Laser Absorption Spectroscopy. Water, Air and Soil Pollution, 2004, 4, 151-158.	0.8	52
90	Ammonia fluxes in relation to cutting and fertilization of an intensively managed grassland derived from an inter-comparison of gradient measurements. Biogeosciences, 2009, 6, 819-834.	3.3	52

#	Article	IF	CITATIONS
91	Ultrafine particle fluxes above four major European cities. Atmospheric Environment, 2009, 43, 4714-4721.	4.1	52
92	Dynamics of ammonia exchange with cut grassland: strategy and implementation of the GRAMINAE Integrated Experiment. Biogeosciences, 2009, 6, 309-331.	3.3	51
93	Measurements of ozone deposition to a potato canopy. Agricultural and Forest Meteorology, 2009, 149, 655-666.	4.8	50
94	Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest. Atmospheric Chemistry and Physics, 2014, 14, 10085-10102.	4.9	50
95	Micrometeorological measurements of net ammonia fluxes over oilseed rape during two vegetation periods. Agricultural and Forest Meteorology, 2000, 105, 351-369.	4.8	49
96	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4978-5010.	3.3	49
97	Ammonia sources and sinks in an intensively managed grassland canopy. Biogeosciences, 2009, 6, 1903-1915.	3.3	48
98	The nitrogen, carbon and greenhouse gas budget of a grazed, cut and fertilised temperate grassland. Biogeosciences, 2017, 14, 2069-2088.	3.3	48
99	Sources of uncertainty in eddy covariance ozone flux measurements made by dry chemiluminescence fast response analysers. Atmospheric Measurement Techniques, 2010, 3, 163-176.	3.1	47
100	Evaluation of European air quality modelled by CAMx including the volatility basis set scheme. Atmospheric Chemistry and Physics, 2016, 16, 10313-10332.	4.9	47
101	Aerosol fluxes and particle growth above managed grassland. Biogeosciences, 2009, 6, 1627-1645.	3.3	46
102	Area fluxes of carbon dioxide, methane, and carbon monoxide derived from airborne measurements around Greater London: A case study during summer 2012. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4940-4952.	3.3	46
103	Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Pathways. Bulletin of the American Meteorological Society, 2005, 86, 1738-1742.	3.3	43
104	Avoiding high ozone pollution in Delhi, India. Faraday Discussions, 2021, 226, 502-514.	3.2	42
105	Concentration-dependent NH3 deposition processes for mixed moorland semi-natural vegetation. Atmospheric Environment, 2007, 41, 2049-2060.	4.1	41
106	Aerosol fluxes and dynamics within and above a tropical rainforest in South-East Asia. Atmospheric Chemistry and Physics, 2010, 10, 9369-9382.	4.9	41
107	Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190320.	3.4	41
108	Anthropogenic air pollutants reduce insect-mediated pollination services. Environmental Pollution, 2022, 297, 118847.	7. 5	41

#	Article	IF	CITATIONS
109	The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest. Atmospheric Chemistry and Physics, 2011, 11, 4121-4134.	4.9	40
110	The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust. Environmental Research Letters, 2016, 11, 044004.	5.2	40
111	Inter-comparison of ammonia fluxes obtained using the Relaxed Eddy Accumulation technique. Biogeosciences, 2009, 6, 2575-2588.	3.3	39
112	Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes. Atmospheric Measurement Techniques, 2011, 4, 1275-1289.	3.1	39
113	Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy. Atmospheric Chemistry and Physics, 2016, 16, 8095-8108.	4.9	39
114	Surface/atmosphere exchange and chemical interaction of gases and aerosols over oilseed rape. Agricultural and Forest Meteorology, 2000, 105, 427-445.	4.8	38
115	Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment. Biogeosciences, 2014, 11, 3163-3186.	3.3	38
116	Water soluble aerosols and gases at a UK background site â€" Part 1: Controls of PM _{2.5} and PM ₁₀ aerosol composition. Atmospheric Chemistry and Physics, 2015, 15, 8131-8145.	4.9	38
117	Development of PTR-MS selectivity for structural isomers: Monoterpenes as a case study. International Journal of Mass Spectrometry, 2012, 310, 10-19.	1.5	37
118	Processes of ammonia air–surface exchange in a fertilized & amp;lt;i& amp;gt;Zea mays& amp;lt;/i& amp;gt; canopy. Biogeosciences, 2013, 10, 981-998.	3.3	37
119	Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments. Atmospheric Chemistry and Physics, 2016, 16, 10965-10984.	4.9	37
120	Direct observations of CO2 emission reductions due to COVID-19 lockdown across European urban districts. Science of the Total Environment, 2022, 830, 154662.	8.0	37
121	Eddy-covariance measurements of nitrous oxide fluxes above a city. Agricultural and Forest Meteorology, 2010, 150, 786-793.	4.8	36
122	Estimation of spatial apportionment of greenhouse gas emissions for the UK using boundary layer measurements and inverse modelling technique. Atmospheric Environment, 2011, 45, 1042-1049.	4.1	36
123	The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3177-3195.	4.0	36
124	Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London. Atmospheric Chemistry and Physics, 2016, 16, 13773-13789.	4.9	36
125	Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass Spectrometer. Atmospheric Environment, 2012, 61, 316-326.	4.1	34
126	Seasonal and diurnal trends in concentrations and fluxes of volatile organic compounds in central London. Atmospheric Chemistry and Physics, 2015, 15, 7777-7796.	4.9	34

#	Article	IF	CITATIONS
127	Measurements of traffic-dominated pollutant emissions in a Chinese megacity. Atmospheric Chemistry and Physics, 2020, 20, 8737-8761.	4.9	33
128	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2407-2426.	4.9	33
129	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	4.8	33
130	Intercomparison and assessment of turbulent and physiological exchange parameters of grassland. Biogeosciences, 2009, 6, 1445-1466.	3.3	33
131	Fluxes of ammonia over oilseed rape. Agricultural and Forest Meteorology, 2000, 105, 327-349.	4.8	32
132	Measurement of NO _{<i>x</i>} Fluxes from a Tall Tower in Central London, UK and Comparison with Emissions Inventories. Environmental Science &	10.0	32
133	The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases. Atmospheric Chemistry and Physics, 2009, 9, 981-994.	4.9	31
134	Development of a low-cost system for measuring conditional time-averaged gradients of SO2 and NH3. Environmental Monitoring and Assessment, 2010, 161, 11-27.	2.7	30
135	Urban natural capital accounts: developing a novel approach to quantify air pollution removal by vegetation. Journal of Environmental Economics and Policy, 2019, 8, 413-428.	2.5	30
136	A measurement-based verification framework for UK greenhouse gas emissions: an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. Atmospheric Chemistry and Physics, 2018, 18, 11753-11777.	4.9	29
137	Temporal characteristics and vertical distribution of atmospheric ammonia and ammonium in winter in Beijing. Science of the Total Environment, 2019, 681, 226-234.	8.0	29
138	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2383-2406.	4.9	29
139	Dynamics of Ammonia Exchange in Response to Cutting and Fertilising in an Intensively-Managed Grassland., 2001,, 167-176.		29
140	ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO GAW and EMEP observation networks. Atmospheric Measurement Techniques, 2015, 8, 2715-2736.	3.1	28
141	An evaluation of four years of nitrous oxide fluxes after application of ammonium nitrate and urea fertilisers measured using the eddy covariance method. Agricultural and Forest Meteorology, 2020, 280, 107812.	4.8	28
142	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 13609-13630.	4.9	28
143	Turbulence characteristics in grassland canopies and implications for tracer transport. Biogeosciences, 2009, 6, 1519-1537.	3.3	27
144	The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3210-3224.	4.0	27

#	Article	IF	CITATIONS
145	Chemically Resolved Particle Fluxes Over Tropical and Temperate Forests. Aerosol Science and Technology, 2013, 47, 818-830.	3.1	27
146	Quantifying missing annual emission sources of heavy metals in the United Kingdom with an atmospheric transport model. Science of the Total Environment, 2014, 479-480, 171-180.	8.0	27
147	Studying the spatial variability of methane flux with five eddy covariance towers of varying height. Agricultural and Forest Meteorology, 2015, 214-215, 456-472.	4.8	27
148	Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy. Atmospheric Chemistry and Physics, 2016, 16, 7149-7170.	4.9	27
149	A Relaxed Eddy Accumulation System for the Automated Measurement of Atmospheric Ammonia Fluxes. Water, Air and Soil Pollution, 2001, 1, 189-202.	0.8	26
150	Surface/atmosphere exchange and chemical interactions of reactive nitrogen compounds above a manured grassland. Agricultural and Forest Meteorology, 2011, 151, 1488-1503.	4.8	26
151	Concentrations of selected volatile organic compounds at kerbside and background sites in central London. Atmospheric Environment, 2014, 95, 456-467.	4.1	26
152	Title is missing!. Water, Air and Soil Pollution, 2001, 1, 167-176.	0.8	25
153	Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest. Atmospheric Chemistry and Physics, 2016, 16, 7171-7194.	4.9	24
154	Sources of non-methane hydrocarbons in surface air in Delhi, India. Faraday Discussions, 2021, 226, 409-431.	3.2	23
155	Potential for Ammonia Recapture by Farm Woodlands: Design and Application of a New Experimental Facility. Scientific World Journal, The, 2001, 1, 791-801.	2.1	22
156	Comparison of ozone fluxes over grassland by gradient and eddy covariance technique. Atmospheric Science Letters, 2009, 10, 164-169.	1.9	21
157	Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	21
158	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences, 2020, 17, 1583-1620.	3.3	21
159	Pan-European rural monitoring network shows dominance of NH ₃ gas and NH ₄ NO ₃ aerosol in inorganic atmospheric pollution load. Atmospheric Chemistry and Physics. 2021, 21, 875-914.	4.9	21
160	Measurement and modelling ozone fluxes over a cut and fertilized grassland. Biogeosciences, 2009, 6, 1987-1999.	3.3	21
161	Concentration-dependent NH3 deposition processes for moorland plant species with and without stomata. Atmospheric Environment, 2007, 41, 8980-8994.	4.1	19
162	Characterization of ozone deposition to a mixed oak–hornbeam forest – flux measurements at five levels above and inside the canopy and their interactions with nitric oxide. Atmospheric Chemistry and Physics, 2018, 18, 17945-17961.	4.9	19

#	Article	IF	Citations
163	Vertical profiles of biogenic volatile organic compounds as observed online at a tower in Beijing. Journal of Environmental Sciences, 2020, 95, 33-42.	6.1	19
164	Application of the EMEP Unified Model to the UK with a Horizontal Resolution of 5 \tilde{A} — 5 km2. , 2009, , 367-372.		19
165	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials. Biogeosciences, 2020, 17, 1621-1654.	3.3	18
166	Application of Tracer Ratio and Inverse Dispersion Methods with Boat-Based Plume Measurements to Estimate Ammonia Emissions from Seabird Colonies. Water, Air and Soil Pollution, 2004, 4, 279-285.	0.8	17
167	Key unknowns in estimating atmospheric emissions from UK land management. Atmospheric Environment, 2011, 45, 1067-1074.	4.1	16
168	Impacts of the 2014 \hat{a} e"2015 Holuhraun eruption on the UK atmosphere. Atmospheric Chemistry and Physics, 2016, 16, 11415-11431.	4.9	16
169	A Relaxed Eddy Accumulation System for the Automated Measurement of Atmospheric Ammonia Fluxes. , 2001, , 189-202.		16
170	Direct measurements of size-segregated particle fluxes above a city. Journal of Aerosol Science, 2000, 31, 116-117.	3.8	15
171	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. Atmospheric Chemistry and Physics, 2021, 21, 10133-10158.	4.9	15
172	Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006. Atmospheric Chemistry and Physics, 2012, 12, 7809-7823.	4.9	14
173	Preface "Nitrogen & amp; amp; Global Change". Biogeosciences, 2012, 9, 1691-1693.	3.3	14
174	PM ₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. Atmospheric Chemistry and Physics, 2021, 21, 11655-11667.	4.9	13
175	Surface–atmosphere fluxes of volatile organic compounds in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 15101-15125.	4.9	13
176	Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability. Biogeosciences, 2017, 14, 5571-5594.	3.3	11
177	Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions. Atmospheric Chemistry and Physics, 2018, 18, 4497-4518.	4.9	11
178	Surfaceâ€"atmosphere exchange of inorganic water-soluble gases and associated ions in bulk aerosol above agricultural grassland pre- and postfertilisation. Atmospheric Chemistry and Physics, 2018, 18, 16953-16978.	4.9	11
179	Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns. Atmospheric Chemistry and Physics, 2018, 18, 5371-5389.	4.9	11
180	Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India. Environmental Science Atmospheres, 2021, 1, 104-117.	2.4	11

#	Article	IF	Citations
181	A two-layer canopy compensation point model for describing bi-directional biosphere-atmosphere exchange of ammonia. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 815-833.	2.7	11
182	Evaluation of a diode laser based photoacoustic instrument combined with preconcentration sampling for measuring surface–atmosphere exchange of ammonia with the aerodynamic gradient method. Atmospheric Environment, 2010, 44, 1490-1496.	4.1	10
183	Seasonal fluxes of carbon monoxide from an intensively grazed grassland in Scotland. Atmospheric Environment, 2018, 194, 170-178.	4.1	10
184	Intercalibration of a passive wind-vane flux sampler against a continuous-flow denuder for the measurements of atmospheric ammonia concentrations and surface exchange fluxes. Atmospheric Environment, 1999, 33, 4379-4388.	4.1	9
185	Volatile organic compound speciation above and within a Douglas fir forest. Atmospheric Environment, 2014, 94, 86-95.	4.1	9
186	Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions. Journal of Atmospheric Chemistry, 2010, 65, 89-110.	3.2	8
187	Atmospheric observations consistent with reported decline in the UK's methane emissions (2013–2020). Atmospheric Chemistry and Physics, 2021, 21, 16257-16276.	4.9	8
188	The high-frequency response correction of eddy covariance fluxes â€" Part 1: An experimental approach and its interdependence with the time-lag estimation. Atmospheric Measurement Techniques, 2021, 14, 5071-5088.	3.1	7
189	Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest. Atmospheric Chemistry and Physics, 2020, 20, 15551-15584.	4.9	7
190	Neural Network Analysis to Evaluate Ozone Damage to Vegetation Under Different Climatic Conditions. Frontiers in Forests and Global Change, 2020, 3, .	2.3	6
191	Direct measurements of black carbon fluxes in central Beijing using the eddy covariance method. Atmospheric Chemistry and Physics, 2021, 21, 147-162.	4.9	6
192	Emission estimates and inventories of non-methane volatile organic compounds from anthropogenic burning sources in India. Atmospheric Environment: X, 2021, 11, 100115.	1.4	6
193	Measuring eddy covariance fluxes of ammonia using tunable diode laser absorption spectroscopy. Water, Air and Soil Pollution, 2005, 4, 151-158.	0.8	5
194	Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010. Atmospheric Chemistry and Physics, 2010, 10, 563-563.	4.9	5
195	The import and export of organic nitrogen species at a Scottish ombrotrophic peatland. Biogeosciences, 2016, 13, 2353-2365.	3.3	5
196	Country-scale greenhouse gas budgets using shipborne measurements: a case study for the UK and Ireland. Atmospheric Chemistry and Physics, 2019, 19, 3043-3063.	4.9	5
197	Advances in Understanding, Models and Parameterizations of Biosphere-Atmosphere Ammonia Exchange. , 2013, , 11-84.		5
198	Process-based modelling of NH ₃ exchange with grazed grasslands. Biogeosciences, 2017, 14, 4161-4193.	3.3	4

#	Article	IF	CITATIONS
199	Meteorological measurements at Auchencorth Moss from 1995 to 2016. Geoscience Data Journal, 2019, 6, 16-29.	4.4	4
200	Subproject BIATEX-2 Measurement and Interpretation of Land-Atmosphere Aerosol Fluxes: Current Issues and New Approaches., 2001,, 45-53.		4
201	Seasonality of isoprene emissions and oxidation products above the remote Amazon. Environmental Science Atmospheres, 2022, 2, 230-240.	2.4	4
202	Correction to "Quantitative sampling using an Aerodyne aerosol mass spectrometer: 2. Measurements of fine particulate chemical composition in two U.K. cities,― Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	3
203	Surface/Atmosphere Exchange of Atmospheric Acids and Aerosols, Including the Effect and Model Treatment of Chemical Interactions. , 2015, , 115-149.		3
204	Reply to 'Circadian control of global isoprene emissions'. Nature Geoscience, 2012, 5, 435-436.	12.9	2
205	Measurement and modelling of the dynamics of NH ₃ surface–atmosphere exchange over the Amazonian rainforest. Biogeosciences, 2021, 18, 2809-2825.	3.3	2
206	The high-frequency response correction of eddy covariance fluxes – Part 2: An experimental approach for analysing noisy measurements of small fluxes. Atmospheric Measurement Techniques, 2021, 14, 5089-5106.	3.1	2
207	Review of methods for assessing deposition of reactive nitrogen pollutants across complex terrain with focus on the UK. Environmental Science Atmospheres, 0, , .	2.4	1
208	Field investigations into the potential influence of ammonia and acidic gases on concentrations and surface - atmosphere exchange of aerosols Journal of Aerosol Science, 1997, 28, S337-S338.	3.8	0
209	Reply from the authors of Lee et al. (2001). Atmospheric Environment, 2002, 36, 2276-2277.	4.1	0
210	Application of tracer ratio and inverse dispersion methods with boat-based plume measurements to estimate ammonia emissions from seabird colonies. Water, Air and Soil Pollution, 2005, 4, 279-285.	0.8	0
211	Corrigendum to "Controls of carbon dioxide concentrations and fluxes above central London" published in Atmos. Chem. Phys., 11, 1913–1928, 2011. Atmospheric Chemistry and Physics, 2011, 11, 2081-2081.	4.9	0
212	Peer review report 1 On "Partitioning ozone fluxes between canopy and forest floor by measurements and a multi-layer model― Agricultural and Forest Meteorology, 2015, 201, 593-594.	4.8	0
213	Impact of Leaf Surface and In-canopy Air Chemistry on the Ecosystem/Atmosphere Exchange of Atmospheric Pollutants. , 2015, , 199-206.		0
214	Passive breath monitoring of livestock: using factor analysis to deconvolve the cattle shed. Journal of Breath Research, 2022, 16, 026005.	3.0	0