Krzysztof Kurc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240662/publications.pdf Version: 2024-02-01

KD7VS7TOF KUDC

#	Article	IF	CITATIONS
1	Programming of Industrial Robots Using Virtual Reality and Digital Twins. Applied Sciences (Switzerland), 2020, 10, 486.	2.5	57
2	Experimental Study of Inconel 718 Surface Treatment by Edge Robotic Deburring with Force Control. Strength of Materials, 2017, 49, 594-604.	0.5	25
3	Robot-operated quality control station based on the UTT method. Open Engineering, 2017, 7, 37-42.	1.6	13
4	MONITORING THE PARAMETERS OF THE ROBOT-OPERATED QUALITY CONTROL PROCESS. Advances in Science and Technology Research Journal, 2017, 11, 232-236.	0.8	13
5	Optimization of Process Parameters of Edge Robotic Deburring with Force Control. International Journal of Applied Mechanics and Engineering, 2016, 21, 987-995.	0.7	12
6	Design, Modelling and Laboratory Testing of a Pipe Inspection Robot. Archive of Mechanical Engineering, 2015, 62, 395-408.	0.7	11
7	Application of Virtual Reality in the Training of Operators and Servicing of Robotic Stations. IFIP Advances in Information and Communication Technology, 2019, , 594-603.	0.7	10
8	The Project of Tank Inspection Robot. Key Engineering Materials, 2012, 518, 375-383.	0.4	9
9	The application of virtual prototyping methods to determine the dynamic parameters of mobile robot. Open Engineering, 2016, 6, .	1.6	9
10	Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesnik, 2017, 24, .	0.2	9
11	Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Tehnicki Vjesnik, 2017, 24, .	0.2	7
12	Non-contact Robotic Measurement of Jet Engine Components with 3D Optical Scanner and UTT Method. Lecture Notes in Electrical Engineering, 2019, , 151-164.	0.4	5
13	Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process. Sensors, 2020, 20, 7053.	3.8	5
14	Application of Virtual Reality in Designing and Programming of Robotic Stations. IFIP Advances in Information and Communication Technology, 2019, , 585-593.	0.7	4
15	Design and dynamic testing of a roller coaster running wheel with a passive vibration damping system. Journal of Vibroengineering, 2018, 20, 1129-1143.	1.0	4
16	Robotic machining in correlation with a 3D scanner. Mechanics and Mechanical Engineering, 2020, 24, 36-41.	0.2	4
17	Determination of Dynamic Parameters for Underwater Robots with Crawler Drives. Applied Mechanics and Materials, 2016, 817, 130-139.	0.2	3
18	Mobile crawler robot vibration analysis in the contexts of motion speed selection. Journal of Vibroengineering, 2017, 19, 2403-2412.	1.0	3

KRZYSZTOF KURC

#	Article	IF	CITATIONS
19	Mobile Inspection Robot. Applied Mechanics and Materials, 2013, 319, 385-392.	0.2	2
20	Verification hybrid control of a wheeled mobile robot and manipulator. Open Engineering, 2016, 6, .	1.6	2
21	Robot-Assisted Quality Inspection of Turbojet Engine Blades. Lecture Notes in Electrical Engineering, 2019, , 337-350.	0.4	2
22	Robotised Geometric Inspection of Thin-Walled Aerospace Casings. Sensors, 2022, 22, 3457.	3.8	2
23	Shape deformation of the clinching joints upper sheet. , 2018, , 253-255.	0.1	1
24	Mechatronic designing and prototyping of a mobile wheeled robot driven by a microcontroller. Journal of Theoretical and Applied Mechanics, 2020, 58, 127-142.	0.5	1
25	Automatic Evaluation of the Robotic Production Process for an Aircraft Jet Engine Casing. Applied Sciences (Switzerland), 2022, 12, 6443.	2.5	1
26	Modeling the inspection robot with magnetic pressure pad. Mechanics and Mechanical Engineering, 2019, 23, 50-58.	0.2	0
27	The Use of VR to Analyze the Profitability of the Construction of a Robotized Station. Advances in Manufacturing Science and Technology, 2020, 44, 32-37.	0.3	Ο