Samuel Strober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240654/publications.pdf Version: 2024-02-01

SAMUEL STROPED

#	Article	IF	CITATIONS
1	Establishment of Chimerism and Organ Transplant Tolerance in Laboratory Animals: Safety and Efficacy of Adaptation to Humans. Frontiers in Immunology, 2022, 13, 805177.	2.2	6
2	The Fourth International Workshop on Clinical Transplant Tolerance. American Journal of Transplantation, 2021, 21, 21-31.	2.6	28
3	The Importance of Bringing Transplantation Tolerance to the Clinic. Transplantation, 2021, 105, 935-940.	0.5	3
4	Development of immunosuppressive myeloid cells to induce tolerance in solid organ and hematopoietic cell transplant recipients. Blood Advances, 2021, 5, 3290-3302.	2.5	6
5	Tomotherapy Applied Total Lymphoid Irradiation and Allogeneic Hematopoietic Cell Transplantation Generates Mixed Chimerism in the Rhesus Macaque Model. Radiation Research, 2021, 196, 623-632.	0.7	6
6	Identification of Two Subsets of Murine DC1 Dendritic Cells That Differ by Surface Phenotype, Gene Expression, and Function. Frontiers in Immunology, 2021, 12, 746469.	2.2	7
7	Novel Radiation Therapy Paradigms and Immunomodulation: Heresies and Hope. Seminars in Radiation Oncology, 2020, 30, 194-200.	1.0	12
8	High-parametric evaluation of human invariant natural killer T cells to delineate heterogeneity in allo- and autoimmunity. Blood, 2020, 135, 814-825.	0.6	13
9	Mixed chimerism and acceptance of kidney transplants after immunosuppressive drug withdrawal. Science Translational Medicine, 2020, 12, .	5.8	47
10	FLASH Irradiation Results in Reduced Severe Skin Toxicity Compared to Conventional-Dose-Rate Irradiation. Radiation Research, 2020, 194, 618-624.	0.7	64
11	Summary of the Third International Workshop on Clinical Tolerance. American Journal of Transplantation, 2019, 19, 324-330.	2.6	29
12	Combined kidney and hematopoeitic cell transplantation to induce mixed chimerism and tolerance. Bone Marrow Transplantation, 2019, 54, 793-797.	1.3	13
13	Nonmyeloablative TLI-ATG conditioning for allogeneic transplantation: mature follow-up from a large single-center cohort. Blood Advances, 2019, 3, 2454-2464.	2.5	12
14	Macrochimerism and clinical transplant tolerance. Human Immunology, 2018, 79, 266-271.	1.2	30
15	Accelerated, but not conventional, radiotherapy of murine B-cell lymphoma induces potent T cell–mediated remissions. Blood Advances, 2018, 2, 2568-2580.	2.5	9
16	A Proinflammatory Invariant Natural Killer T Cells Phenotypic State Associates with Human Graft-Versus-Host Disease Onset and Response. Blood, 2018, 132, 2111-2111.	0.6	0
17	Nonmyeloablative Allogeneic Transplantation Using TLI-ATG Conditioning for Lymphoid and Myeloid Malignancies: Mature Follow-up from a Large, Single Institution Cohort. Blood, 2018, 132, 4638-4638.	0.6	0
18	Tolerogenic interactions between CD8+ dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts. Blood, 2017, 129, 1718-1728.	0.6	29

#	Article	IF	CITATIONS
19	The Promise of Targeting Macrophages in Cancer Therapy. Clinical Cancer Research, 2017, 23, 3241-3250.	3.2	252
20	HLA-mismatched unrelated donor transplantation using TLI-ATG conditioning has a low risk of GVHD and potent antitumor activity. Blood Advances, 2017, 1, 1347-1357.	2.5	8
21	Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants. Blood, 2016, 127, 1539-1543.	0.6	32
22	Disruption of evasive immune cell microenvironment in tumors reflects immunity induced by radiation therapy. Oncolmmunology, 2016, 5, e1072673.	2.1	8
23	Stable mixed chimerism and tolerance to human organ transplants. Chimerism, 2015, 6, 27-32.	0.7	3
24	Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions. Clinical Cancer Research, 2015, 21, 3727-3739.	3.2	373
25	Invariant natural killer T cells in lupus patients promote IgG and IgG autoantibody production. European Journal of Immunology, 2015, 45, 612-623.	1.6	26
26	Donor-Derived CIK Cell Infusion As Consolidative Therapy after Non-Myeloablative Allogeneic Transplant in Patients with Myeloid Neoplasms. Blood, 2015, 126, 3232-3232.	0.6	1
27	Path to clinical transplantation tolerance and prevention of graft-versus-host disease. Immunologic Research, 2014, 58, 240-248.	1.3	6
28	Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice. Journal of Autoimmunity, 2014, 50, 87-98.	3.0	20
29	Rare cells predict GVHD. Blood, 2012, 119, 4820-4821.	0.6	4
30	Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants. Blood, 2012, 119, 1581-1589.	0.6	87
31	Translational studies in hematopoietic cell transplantation: Treatment of hematologic malignancies as a stepping stone to tolerance induction. Seminars in Immunology, 2011, 23, 273-281.	2.7	29
32	CD8+CD44hi but not CD4+CD44hi memory T cells mediate potent graft antilymphoma activity without GVHD. Blood, 2011, 117, 3230-3239.	0.6	53
33	Donor immunization with WT1 peptide augments antileukemic activity after MHC-matched bone marrow transplantation. Blood, 2011, 118, 5319-5329.	0.6	15
34	Induced Immune Tolerance for Kidney Transplantation. New England Journal of Medicine, 2011, 365, 1359-1360.	13.9	110
35	Selective Resistance of CD44hi T Cells to p53-Dependent Cell Death Results in Persistence of Immunologic Memory after Total Body Irradiation. Journal of Immunology, 2011, 187, 4100-4108.	0.4	28
36	NKT cells, Treg, and their interactions in bone marrow transplantation. European Journal of Immunology, 2010, 40, 1862-1869.	1.6	64

#	Article	IF	CITATIONS
37	Host natural killer T cells induce an interleukin-4–dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood, 2009, 113, 4458-4467.	0.6	153
38	Ineffective Vaccination against Solid Tumors Can Be Enhanced by Hematopoietic Cell Transplantation. Journal of Immunology, 2009, 183, 7196-7203.	0.4	14
39	β-galactosylceramide alters invariant natural killer T cell function and is effective treatment for lupus. Clinical Immunology, 2009, 132, 321-333.	1.4	16
40	Differences in Bclâ€2 expression by Tâ€cell subsets alter their balance after <i>in vivo</i> irradiation to favor CD4 ⁺ Bclâ€2 ^{hi} NKT cells. European Journal of Immunology, 2009, 39, 763-775.	1.6	28
41	TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood, 2009, 114, 1099-1109.	0.6	150
42	Natural killer T cells and innate immune B cells from lupusâ€prone NZB/W mice interact to generate IgM and IgG autoantibodies. European Journal of Immunology, 2008, 38, 156-165.	1.6	54
43	Tolerance and Chimerism after Renal and Hematopoietic-Cell Transplantation. New England Journal of Medicine, 2008, 358, 362-368.	13.9	475
44	Protective conditioning against GVHD and graft rejection after combined organ and hematopoietic cell transplantation. Blood Cells, Molecules, and Diseases, 2008, 40, 48-54.	0.6	14
45	Simultaneous Protection Against Allograft Rejection and Graft-Versus-Host Disease After Total Lymphoid Irradiation: Role of Natural Killer T Cells. Transplantation, 2008, 85, 607-614.	0.5	14
46	Tolerance to rat liver allograft after total lymphoid irradiation is mediated by CD4+CD25+ regulatory T cells. FASEB Journal, 2008, 22, 862.13.	0.2	0
47	Host NKT Cells Can Prevent Graft-versus-Host Disease and Permit Graft Antitumor Activity after Bone Marrow Transplantation. Journal of Immunology, 2007, 178, 6242-6251.	0.4	121
48	Expression of CD161 (NKR-P1A) Defines Subsets of Human CD4 and CD8 T Cells with Different Functional Activities. Journal of Immunology, 2006, 176, 211-216.	0.4	138
49	Allosensitized Memory CD4 T Cells Induce Chronic Graft Versus Host Disease Blood, 2006, 108, 449-449.	0.6	1
50	Clinical Outcomes Following Allogeneic Hematopoietic Cell Transplantation (HCT) Using Nonmyeloablative Host Conditioning with Total Lymphoid Irradiation and Anti-Thymocyte Globulin Confirm a Low Incidence of Graft Versus Host Disease (GVHD) and Retained Graft Anti-Tumor Activity Blood, 2006, 108, 603-603.	0.6	3
51	Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood, 2005, 105, 2220-2226.	0.6	379
52	Protective Conditioning for Acute Graft-versus-Host Disease. New England Journal of Medicine, 2005, 353, 1321-1331.	13.9	319
53	Stepwise Development of Committed Progenitors in the Bone Marrow That Generate Functional T Cells in the Absence of the Thymus. Journal of Immunology, 2005, 175, 4363-4373.	0.4	28
54	Mechanisms by Which NK T Cells Become the Predominant T Cell Subset in Mice after Irradiation Blood, 2005, 106, 4295-4295.	0.6	0

#	Article	IF	CITATIONS
55	Donor CD4+ T and B Cells in Transplants Induce Autoimmune-Like Chronic Graft Versus Host Disease Blood, 2005, 106, 1313-1313.	0.6	0
56	Approaches to transplantation tolerance in humans. Transplantation, 2004, 77, 932-936.	0.5	42
57	Non-Myeloablative Conditioning of Total Lymphoid Irradiation (TLI) and Anti-Thymocyte Globulin (ATG) Protects Against Acute GVHD Following Allogeneic Hematopoietic Cell Transplantation (HCT) but Retains Anti-Tumor Activity Blood, 2004, 104, 433-433.	0.6	1
58	The Transcription Factor Pbx1 Is Required for the Development of Double Positive Thymic T Cells Blood, 2004, 104, 2771-2771.	0.6	1
59	CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nature Medicine, 2003, 9, 1144-1150.	15.2	1,174
60	Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biology of Blood and Marrow Transplantation, 2003, 9, 355-363.	2.0	131
61	Early Defect Prethymic in Bone Marrow T Cell Progenitors in Athymic nu/nu Mice. Journal of Immunology, 2003, 171, 1207-1215.	0.4	16
62	Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. Journal of Clinical Investigation, 2003, 112, 1211-1222.	3.9	71
63	Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. Journal of Clinical Investigation, 2003, 112, 1211-1222.	3.9	130
64	Immune Tolerance to Combined Organ and Bone Marrow Transplants After Fractionated Lymphoid Irradiation Involves Regulatory NK T Cells and Clonal Deletion. Journal of Immunology, 2002, 169, 5564-5570.	0.4	81
65	Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation. Blood, 2002, 99, 1449-1457.	0.6	81
66	Mixed chimerism and immunosuppressive drug withdrawal after hla-mismatched kidney and hematopoietic progenitor transplantation1. Transplantation, 2002, 73, 1386-1391.	0.5	186
67	Donor-type CD4+CD25+ Regulatory T Cells Suppress Lethal Acute Graft-Versus-Host Disease after Allogeneic Bone Marrow Transplantation. Journal of Experimental Medicine, 2002, 196, 389-399.	4.2	1,012
68	Allogeneic bone marrow cells that facilitate complete chimerism and eliminate tumor cells express both CD8 and T-cell antigen receptor–αβ. Blood, 2001, 97, 3458-3465.	0.6	20
69	Rapid engraftment after allogeneic transplantation of density-enriched peripheral blood CD34+ cells in patients with advanced hematologic malignancies. Cancer, 2001, 91, 2205-2213.	2.0	8
70	Treatment of rheumatoid arthritis with total lymphoid irradiation: Long-term survival. Arthritis and Rheumatism, 2001, 44, 1525-1528.	6.7	4
71	Predominance of NK1.1+TCRαβ+ or DX5+TCRαβ+ T Cells in Mice Conditioned with Fractionated Lymphoid Irradiation Protects Against Graft-Versus-Host Disease: "Natural Suppressor―Cells. Journal of Immunology, 2001, 167, 2087-2096.	0.4	170
72	Tolerance, mixed chimerism and protection against graft-versus-host disease after total lymphoid irradiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 739-748.	1.8	35

#	Article	IF	CITATIONS
73	Cutting Edge: A Role for CD1 in the Pathogenesis of Lupus in NZB/NZW Mice. Journal of Immunology, 2000, 164, 5000-5004.	0.4	150
74	Natural killer 1.1+ T cells and ″natural suppressor―T cells in the bone marrow. Journal of Allergy and Clinical Immunology, 2000, 106, S113-S114.	1.5	14
75	CYCLOSPORINE FACILITATES CHIMERIC AND INHIBITS NONCHIMERIC TOLERANCE AFTER POSTTRANSPLANT TOTAL LYMPHOID IRRADIATION1. Transplantation, 2000, 69, 649-655.	O.5	38
76	CLINICAL TRANSPLANTATION TOLERANCE TWELVE YEARS AFTER PROSPECTIVE WITHDRAWAL OF IMMUNOSUPPRESSIVE DRUGS: STUDIES OF CHIMERISM AND ANTI-DONOR REACTIVITY1. Transplantation, 2000, 69, 1549-1554.	0.5	118
77	Bone Marrow NK1.1â^' and NK1.1+ T Cells Reciprocally Regulate Acute Graft versus Host Disease. Journal of Experimental Medicine, 1999, 189, 1073-1081.	4.2	300
78	COMPARISON OF CHIMERIC AND NON-CHIMERIC TOLERANCE USING POSTTRANSPLANT TOTAL LYMPHOID IRRADIATION. Transplantation, 1999, 68, 1036-1044.	0.5	36
79	Role of Bone Marrow T Cells in Lupus and Graft versus Host Disease. Japanese Journal of Clinical Immunology, 1999, 22, 203-203.	0.0	0
80	Subsets of Transgenic T Cells That Recognize CD1 Induce or Prevent Murine Lupus: Role of Cytokines. Journal of Experimental Medicine, 1998, 187, 525-536.	4.2	77
81	DONOR BLOOD MONOCYTES BUT NOT T OR B CELLS FACILITATE LONG-TERM ALLOGRAFT SURVIVAL AFTER TOTAL LYMPHOID IRRADIATION1. Transplantation, 1998, 66, 585-593.	0.5	23
82	Granulocyte Colony-Stimulating Factor Reduces the Capacity of Blood Mononuclear Cells to Induce Graft-Versus-Host Disease: Impact on Blood Progenitor Cell Transplantation. Blood, 1997, 90, 453-463.	0.6	146
83	From stem cells to lymphocytes; biology and transplantation. Immunological Reviews, 1997, 157, 13-40.	2.8	64
84	Granulocyte Colony-Stimulating Factor Reduces the Capacity of Blood Mononuclear Cells to Induce Graft-Versus-Host Disease: Impact on Blood Progenitor Cell Transplantation. Blood, 1997, 90, 453-463.	0.6	9
85	Effects of Growth Hormone and Estrogen on T Lymphocytes in Older Women. Journal of the American Geriatrics Society, 1996, 44, 1038-1042.	1.3	12
86	Double Negative (CD4-CD8-alphabeta+) T Cells Which Promote Tolerance Induction and Regulate Autoimmunity. Immunological Reviews, 1996, 149, 217-230.	2.8	78
87	MECHANISMS OF TOLERANCE TO RAT HEART ALLOGRAFTS USING POSTTRANSPLANT TLI. Transplantation, 1996, 62, 510-517.	O.5	23
88	INDUCTION OF TOLERANCE TO HEART ALLOGRAFTS IN RATS USING POSTTRANSPLANT TOTAL LYMPHOID IRRADIATION AND ANTI-T CELL ANTIBODIES1. Transplantation, 1993, 56, 1443-1446.	0.5	26
89	T lymphocyte–synovial fibroblast interactions induced by mycobacterial proteins in rheumatoid arthritis. Arthritis and Rheumatism, 1991, 34, 679-686.	6.7	14
90	Ly-1 b cells and disease activity in (new zealand black × new zealand white)f1 mice. Arthritis and Rheumatism, 1990, 33, 553-562.	6.7	7

#	Article	IF	CITATIONS
91	B cell infiltration of the thymic medulla in new zealand black, new zealand white, and (new zealand) Tj ETQq1 1	0.784314	rgBT/Overlo
92	Isolation of CD4-CD8-mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature, 1989, 339, 226-229.	13.7	570
93	Acquired Immune Tolerance to Cadaveric Renal Allografts. New England Journal of Medicine, 1989, 321, 28-33.	13.9	183
94	NATURAL SUPPRESSOR CELLS DERIVED FROM ADULT SPLEEN AND THYMUS. Transplantation, 1989, 48, 107-110.	0.5	12
95	Treatment of lupus nephritis with total lymphoid irradiation. observations during a 12–79-month followup. Arthritis and Rheumatism, 1988, 31, 850-858.	6.7	21
96	PREOPERATIVE PREPARATION OF HIGH-RISK, SPECIFICALLY HYPERIMMUNIZED CANINE RENAL ALLOGRAFT RECIPIENTS WITH TOTAL-LYMPHOID IRRADIATION AND CYCLOSPORINE. Transplantation, 1987, 44, 185-194.	0.5	9
97	Effect of total lymphoid irradiation on levels of serum autoantibodies in systemic lupus erythematosus and in rheumatoid arthritis. Arthritis and Rheumatism, 1986, 29, 26-31.	6.7	25
98	TREATMENT OF CADAVERIC RENAL TRANSPLANT RECIPIENTS WITH TOTAL LYMPHOID IRRADIATION, ANTITHYMOCYTE GLOBULIN, AND LOW-DOSE PREDNISONE. Lancet, The, 1985, 326, 1321-1325.	6.3	46
99	Sustained improvement of intractable rheumatoid arthritis after total lymphoid irradiation. Arthritis and Rheumatism, 1983, 26, 937-946.	6.7	64
100	SURVIVAL OF PRIMATES FOLLOWING ORTHOTOPIC CARDIAC TRANSPLANTATION TREATED WITH TOTAL LYMPHOID IRRADIATION AND CHEMICAL IMMUNE SUPPRESSION. Transplantation, 1981, 32, 467-473.	0.5	40
101	Arthritis in a patient with mycosis fungoides: complete remission after radiotherapy. Arthritis and Rheumatism, 1979, 22, 424-425.	6.7	19
102	Immunobiology of a Spontaneous Murine B Cell Leukemia (BCL1). Immunological Reviews, 1979, 48, 169-195.	2.8	62
103	Spontaneous murine B-cell leukaemia. Nature, 1978, 272, 624-626.	13.7	254
104	The long term effects of radiation on T and B lymphocytes in the peripheral blood after regional irradiation. Cancer, 1977, 40, 2071-2078.	2.0	71
105	The long term effects of radiation on T and B lymphocytes in the peripheral blood after regional irradiation. , 1977, 40, 2071.		1
106	Quantitation of T and B lymphocytes and cellular immune function in Hodgkin's disease. Cancer, 1975, 36, 169-179.	2.0	138
107	Immune Function Cell Surface Characteristics and Maturation of B Cell Subpopulations. Immunological Reviews, 1975, 24, 84-112.	2.8	26
108	MATURATION OF B LYMPHOCYTES IN THE RAT. Journal of Experimental Medicine, 1973, 138, 1331-1344.	4.2	64

#	Article	IF	CITATIONS
109	BIOLOGICAL CHARACTERISTICS OF T AND B MEMORY LYMPHOCYTES IN THE RAT. Journal of Experimental Medicine, 1973, 137, 1275-1292.	4.2	48
110	INITIATION OF ANTIBODY RESPONSES BY DIFFERENT CLASSES OF LYMPHOCYTES. Journal of Experimental Medicine, 1972, 136, 851-871.	4.2	76
111	Recirculation of "B―Lymphocytes in Immunized Rats. Nature: New Biology, 1972, 237, 247-249.	4.5	5