Jesse Lee Eickholt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240176/publications.pdf

Version: 2024-02-01

30	1,275	15	22
papers	citations	h-index	g-index
30	30	30	1578
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Deep Learning Network Approach to <italic>ab initio</italic> Protein Secondary Structure Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 103-112.	3.0	254
2	Predicting protein residue–residue contacts using deep networks and boosting. Bioinformatics, 2012, 28, 3066-3072.	4.1	149
3	Improving Protein Fold Recognition by Deep Learning Networks. Scientific Reports, 2015, 5, 17573.	3.3	107
4	Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries. ACS Applied Materials & Amp; Interfaces, 2019, 11, 18494-18503.	8.0	104
5	PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinformatics, 2009, 10, 436.	2.6	92
6	A comprehensive overview of computational protein disorder prediction methods. Molecular BioSystems, 2012, 8, 114-121.	2.9	92
7	APOLLO: a quality assessment service for single and multiple protein models. Bioinformatics, 2011, 27, 1715-1716.	4.1	89
8	DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinformatics, 2013, 14, 88.	2.6	74
9	DoBo: Protein domain boundary prediction by integrating evolutionary signals and machine learning. BMC Bioinformatics, 2011, 12, 43.	2.6	52
10	Machine Learning Screening of Metal-Ion Battery Electrode Materials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53355-53362.	8.0	42
11	Characterizing the Discussion of Antibiotics in the Twittersphere: What is the Bigger Picture?. Journal of Medical Internet Research, 2015, 17, e154.	4.3	34
12	The MULTICOM toolbox for protein structure prediction. BMC Bioinformatics, 2012, 13, 65.	2.6	30
13	Designing and benchmarking the MULTICOM protein structure prediction system. BMC Structural Biology, 2013, 13, 2.	2.3	25
14	Benchmarking Deep Networks for Predicting Residue-Specific Quality of Individual Protein Models in CASP11. Scientific Reports, 2016, 6, 19301.	3.3	22
15	Applications of deep convolutional neural networks to predict length, circumference, and weight from mostly dewatered images of fish. Ecology and Evolution, 2020, 10, 9313-9325.	1.9	20
16	A conformation ensemble approach to protein residue-residue contact. BMC Structural Biology, 2011, 11, 38.	2.3	15
17	An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions. International Journal of Molecular Sciences, 2015, 16, 15384-15404.	4.1	15
18	Practical Active Learning Stations to Transform Existing Learning Environments Into Flexible, Active Learning Classrooms. IEEE Transactions on Education, 2021, 64, 95-102.	2.4	15

#	Article	IF	CITATIONS
19	Advancements towards selective barrier passage by automatic species identification: applications of deep convolutional neural networks on images of dewatered fish. ICES Journal of Marine Science, 2020, 77, 2804-2813.	2.5	12
20	Levels of active learning in programming skill acquisition: From lecture to active learning rooms. , 2017, , .		7
21	A distributed pipeline for DIDSON data processing. , 2017, , .		5
22	Recursive protein modeling: A divide and conquer strategy for protein structure prediction and its case study in CASP9. , $2011, , .$		4
23	TopQA: a topological representation for single-model protein quality assessment with machine learning. International Journal of Computational Biology and Drug Design, 2020, 13, 144.	0.3	4
24	Creating Economy Active Learning Classrooms for IT Students. , 2017, , .		3
25	Supporting Project-Based Learning through Economical and Flexible Learning Spaces. Education Sciences, 2019, 9, 212.	2.6	3
26	Supporting active learning through commodity and open source solutions., 2017,,.		2
27	Low-Cost Active Learning Benefits for Introductory Computer Science Courses. , 2019, , .		2
28	PCP-ML: Protein characterization package for machine learning. BMC Research Notes, 2014, 7, 810.	1.4	1
29	Advancing Adoption of Active Learning Pedagogy via New Avenues of Research and Training. , 2019, , .		1
30	Adopting the MapReduce framework to pre-train 1-D and 2-D protein structure predictors with large protein datasets. , 2014, , .		0