List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240058/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanism of silk processing in insects and spiders. Nature, 2003, 424, 1057-1061.                                                                     | 13.7 | 1,214     |
| 2  | Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 3115-3124.                                                       | 5.7  | 1,056     |
| 3  | Porous 3-D Scaffolds from Regenerated Silk Fibroin. Biomacromolecules, 2004, 5, 718-726.                                                               | 2.6  | 807       |
| 4  | Structure and Properties of Silk Hydrogels. Biomacromolecules, 2004, 5, 786-792.                                                                       | 2.6  | 735       |
| 5  | ElectrospinningBombyx moriSilk with Poly(ethylene oxide). Biomacromolecules, 2002, 3, 1233-1239.                                                       | 2.6  | 679       |
| 6  | Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials, 2004, 25, 1039-1047.                                          | 5.7  | 596       |
| 7  | Water-Stable Silk Films with Reduced β-Sheet Content. Advanced Functional Materials, 2005, 15, 1241-1247.                                              | 7.8  | 553       |
| 8  | Macrophage responses to silk. Biomaterials, 2003, 24, 3079-3085.                                                                                       | 5.7  | 504       |
| 9  | Microporous Carbon Nanoplates from Regenerated Silk Proteins for Supercapacitors. Advanced<br>Materials, 2013, 25, 1993-1998.                          | 11.1 | 480       |
| 10 | Mechanical Properties of Electrospun Silk Fibers. Macromolecules, 2004, 37, 6856-6864.                                                                 | 2.2  | 297       |
| 11 | Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors. ACS<br>Applied Materials & Interfaces, 2015, 7, 3684-3690.      | 4.0  | 261       |
| 12 | Biomaterial Films ofBombyxMoriSilk Fibroin with Poly(ethylene oxide). Biomacromolecules, 2004, 5,<br>711-717.                                          | 2.6  | 224       |
| 13 | Nanofibrous Membranes Prepared by Multiwalled Carbon Nanotube/Poly(methyl methacrylate)<br>Composites. Macromolecules, 2004, 37, 9899-9902.            | 2.2  | 223       |
| 14 | Electrically Conductive Bacterial Cellulose by Incorporation of Carbon Nanotubes.<br>Biomacromolecules, 2006, 7, 1280-1284.                            | 2.6  | 206       |
| 15 | Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. Journal of Power Sources, 2014, 262, 79-85. | 4.0  | 203       |
| 16 | Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nature<br>Communications, 2015, 6, 7145.                       | 5.8  | 192       |
| 17 | Advances in the Design of 3D‣tructured Electrode Materials for Lithiumâ€Metal Anodes. Advanced Materials, 2020, 32, e2002193.                          | 11.1 | 165       |
| 18 | Applications of Carbon Nanotubes for Lithium Ion Battery Anodes. Materials, 2013, 6, 1138-1158.                                                        | 1.3  | 149       |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Carbon Nanotube-Adsorbed Polystyrene and Poly(methyl methacrylate) Microspheres. Chemistry of<br>Materials, 2005, 17, 4034-4037.                                                     | 3.2  | 146       |
| 20 | Reinforcing effects of adding alkylated graphene oxide to polypropylene. Carbon, 2011, 49, 3553-3559.                                                                                | 5.4  | 137       |
| 21 | Sodiumâ€ion Storage in Pyroproteinâ€Based Carbon Nanoplates. Advanced Materials, 2015, 27, 6914-6921.                                                                                | 11.1 | 120       |
| 22 | Preparation of superhydrophobic polystyrene membranes by electrospinning. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2008, 313-314, 411-414.               | 2.3  | 119       |
| 23 | Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: A comparison of nanofiber and nanocrystal. Carbohydrate Polymers, 2020, 232, 115771. | 5.1  | 108       |
| 24 | Electrospinning of Poly(ethylene oxide) with Bacterial Cellulose Whiskers. Macromolecular<br>Symposia, 2007, 249-250, 289-294.                                                       | 0.4  | 107       |
| 25 | Thermal and electrical properties of poly(l-lactide)-graft-multiwalled carbon nanotube composites.<br>European Polymer Journal, 2007, 43, 1729-1735.                                 | 2.6  | 93        |
| 26 | Modification and applications of bacterial celluloses in polymer science. Macromolecular Research, 2010, 18, 309-320.                                                                | 1.0  | 93        |
| 27 | Nylon 610 and carbon nanotube composite by in situ interfacial polymerization. Polymer, 2006, 47, 3961-3966.                                                                         | 1.8  | 92        |
| 28 | Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes of Nylon 6. Macromolecular Rapid<br>Communications, 2006, 27, 146-151.                                                    | 2.0  | 87        |
| 29 | Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning. Current Applied Physics, 2009, 9, e96-e99.                                  | 1.1  | 86        |
| 30 | Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydrate Polymers, 2021, 254, 117317.        | 5.1  | 83        |
| 31 | Hierarchically porous carbon nanofibers containing numerous heteroatoms forÂsupercapacitors.<br>Journal of Power Sources, 2013, 234, 285-291.                                        | 4.0  | 82        |
| 32 | Crumpled graphene paper for high power sodium battery anode. Carbon, 2016, 99, 658-664.                                                                                              | 5.4  | 81        |
| 33 | Chemical and physical reinforcement of hydrophilic gelatin film with di-aldehyde nanocellulose.<br>International Journal of Biological Macromolecules, 2020, 146, 332-342.           | 3.6  | 80        |
| 34 | Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes. Advanced Energy Materials,<br>2018, 8, 1701261.                                                                  | 10.2 | 79        |
| 35 | Silk apatite composites from electrospun fibers. Journal of Materials Research, 2005, 20, 3374-3384.                                                                                 | 1.2  | 76        |
| 36 | Citrus-Peel-Derived, Nanoporous Carbon Nanosheets Containing Redox-Active Heteroatoms for<br>Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2016, 8, 3175-3181.             | 4.0  | 76        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Long-Lasting Nb <sub>2</sub> O <sub>5</sub> -Based Nanocomposite Materials for Li-Ion Storage. ACS<br>Applied Materials & Interfaces, 2017, 9, 2267-2274.                                       | 4.0 | 75        |
| 38 | Electrically conductive transparent papers using multiwalled carbon nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1235-1242.                                        | 2.4 | 72        |
| 39 | High-performance supercapacitors based on defect-engineered carbon nanotubes. Carbon, 2014, 80, 246-254.                                                                                        | 5.4 | 68        |
| 40 | Pseudocapacitive Effects of N-Doped Carbon Nanotube Electrodes in Supercapacitors. Materials, 2012,<br>5, 1258-1266.                                                                            | 1.3 | 67        |
| 41 | Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility.<br>Synthetic Metals, 2012, 162, 1364-1368.                                                  | 2.1 | 67        |
| 42 | Ultraâ€Thin Hollow Carbon Nanospheres for Pseudocapacitive Sodiumâ€Ion Storage. ChemElectroChem,<br>2015, 2, 359-365.                                                                           | 1.7 | 66        |
| 43 | Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions.<br>Journal of Physics and Chemistry of Solids, 2008, 69, 1209-1212.                        | 1.9 | 64        |
| 44 | Thermal and electrical conductivity of poly(l-lactide)/multiwalled carbon nanotube nanocomposites.<br>Current Applied Physics, 2008, 8, 803-806.                                                | 1.1 | 62        |
| 45 | Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage.<br>Nanoscale, 2015, 7, 15051-15058.                                                            | 2.8 | 62        |
| 46 | Porous graphene/carbon nanotube composite cathode for proton exchange membrane fuel cell.<br>Synthetic Metals, 2011, 161, 2460-2465.                                                            | 2.1 | 60        |
| 47 | Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents. Current Applied Physics, 2012, 12, 637-642.                                   | 1.1 | 57        |
| 48 | Conversion Reaction of Copper Sulfide Based Nanohybrids for Sodium-Ion Batteries. ACS Sustainable<br>Chemistry and Engineering, 2017, 5, 9802-9808.                                             | 3.2 | 57        |
| 49 | Transparent nanocomposites prepared by incorporating microbial nanofibrils into poly(l-lactic acid).<br>Current Applied Physics, 2009, 9, S69-S71.                                              | 1.1 | 56        |
| 50 | Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors. Carbon Letters, 2016, 19, 66-71.                                                                                 | 3.3 | 55        |
| 51 | Multiwalled carbon nanotube cryogels with aligned and non-aligned porous structures. Polymer, 2009, 50, 2786-2792.                                                                              | 1.8 | 54        |
| 52 | Ultra strong pyroprotein fibres with long-range ordering. Nature Communications, 2017, 8, 74.                                                                                                   | 5.8 | 51        |
| 53 | Free-standing heterogeneous hybrid papers based on mesoporous Î <sup>3</sup> -MnO2 particles and carbon nanotubes for lithium-ion battery anodes. Journal of Power Sources, 2013, 244, 747-751. | 4.0 | 50        |
| 54 | Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning. Current Applied Physics, 2009, 9, S95-S97.                                                 | 1.1 | 49        |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Facile and green fabrication of silk sericin films reinforced with bamboo-derived cellulose nanofibrils. Journal of Cleaner Production, 2018, 200, 1034-1042.                                   | 4.6  | 47        |
| 56 | Fluorescent silk fibroin nanoparticles prepared using a reverse microemulsion. Macromolecular<br>Research, 2008, 16, 604-608.                                                                   | 1.0  | 46        |
| 57 | Prevention of cellulose nanofibril agglomeration during dehydration and enhancement of redispersibility by hydrophilic gelatin. Cellulose, 2019, 26, 4357-4369.                                 | 2.4  | 46        |
| 58 | Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromolecular Research, 2013, 21, 529-533.           | 1.0  | 45        |
| 59 | Restoration of thermally reduced graphene oxide by atomic-level selenium doping. NPG Asia Materials, 2016, 8, e338-e338.                                                                        | 3.8  | 45        |
| 60 | Silk protein as a fascinating biomedical polymer: Structural fundamentals and applications.<br>Macromolecular Research, 2009, 17, 935-942.                                                      | 1.0  | 42        |
| 61 | High and rapid alkali cation storage in ultramicroporous carbonaceous materials. Journal of Power<br>Sources, 2016, 313, 142-151.                                                               | 4.0  | 42        |
| 62 | Pyroproteinâ€Based Electronic Textiles with High Stability. Advanced Materials, 2017, 29, 1605479.                                                                                              | 11.1 | 42        |
| 63 | Waste Beverage Coffee-Induced Hard Carbon Granules for Sodium-Ion Batteries. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 12734-12740.                                                | 3.2  | 41        |
| 64 | Chain extension and biodegradation of poly(butylene succinate) with maleic acid units. Journal of<br>Polymer Science, Part B: Polymer Physics, 2000, 38, 2240-2246.                             | 2.4  | 39        |
| 65 | Synthesis of bacterial celluloses in multiwalled carbon nanotube-dispersed medium. Carbohydrate<br>Polymers, 2009, 77, 457-463.                                                                 | 5.1  | 39        |
| 66 | Magnetomotility of untethered helical soft robots. RSC Advances, 2019, 9, 11272-11280.                                                                                                          | 1.7  | 39        |
| 67 | Thermal and mechanical properties of mandelic acid-copolymerized poly(butylene succinate) and poly(ethylene adipate). Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1504-1511. | 2.4  | 38        |
| 68 | Pyroprotein-Derived Hard Carbon Fibers Exhibiting Exceptionally High Plateau Capacities for Sodium<br>Ion Batteries. ACS Applied Energy Materials, 2019, 2, 1185-1191.                          | 2.5  | 38        |
| 69 | Porous carbon nanotube electrodes supported by natural polymeric membranes for PEMFC. Synthetic<br>Metals, 2010, 160, 561-565.                                                                  | 2.1  | 37        |
| 70 | pH-Sensitive Multiwalled Carbon Nanotube Dispersion with Silk Fibroins. Biomacromolecules, 2009,<br>10, 82-86.                                                                                  | 2.6  | 35        |
| 71 | Electrically conducting electrospun silk membranes fabricated by adsorption of carbon nanotubes.<br>Colloid and Polymer Science, 2007, 285, 1163-1167.                                          | 1.0  | 34        |
| 72 | Multiwalled Carbon Nanotubes-Embedded Electrospun Bacterial Cellulose Nanofibers. Molecular<br>Crystals and Liquid Crystals, 2010, 519, 169-178.                                                | 0.4  | 34        |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Carbon aerogels based on regenerated silk proteins and graphene oxide for supercapacitors.<br>Macromolecular Research, 2014, 22, 509-514.                                     | 1.0  | 34        |
| 74 | Anodeâ€Free Sodium Metal Batteries Based on Nanohybrid Core–Shell Templates. Small, 2019, 15, e1901274.                                                                       | 5.2  | 34        |
| 75 | pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water.<br>Macromolecular Research, 2008, 16, 539-543.                                       | 1.0  | 33        |
| 76 | Nylon 610/functionalized multiwalled carbon nanotubes composites by in situ interfacial polymerization. Materials Letters, 2007, 61, 2251-2254.                               | 1.3  | 32        |
| 77 | Preparation, properties and application of polyamide/carbon nanotube nanocomposites.<br>Macromolecular Research, 2009, 17, 207-217.                                           | 1.0  | 32        |
| 78 | Aspect ratio control of acid modified multiwalled carbon nanotubes. Current Applied Physics, 2010, 10, 1046-1052.                                                             | 1.1  | 32        |
| 79 | Amphichargeâ€ <b>S</b> torable Pyropolymers Containing Multitiered Nanopores. Advanced Energy Materials, 2017, 7, 1700629.                                                    | 10.2 | 32        |
| 80 | Sulfur-Doped Carbon Nanotemplates for Sodium Metal Anodes. ACS Applied Energy Materials, 2018, 1,<br>1846-1852.                                                               | 2.5  | 32        |
| 81 | Properties of aliphatic polyesters withn-paraffinic side branches. Journal of Applied Polymer Science, 2000, 77, 547-555.                                                     | 1.3  | 31        |
| 82 | Asymmetric Energy Storage Devices Based on Surface-Driven Sodium-Ion Storage. ACS Sustainable<br>Chemistry and Engineering, 2017, 5, 616-624.                                 | 3.2  | 30        |
| 83 | Tin Sulfideâ€Based Nanohybrid for Highâ€Performance Anode of Sodiumâ€ŀon Batteries. Small, 2017, 13,<br>1700767.                                                              | 5.2  | 30        |
| 84 | Synergistic catalytic effects of oxygen and nitrogen functional groups on active carbon electrodes for all-vanadium redox flow batteries. RSC Advances, 2017, 7, 43227-43232. | 1.7  | 30        |
| 85 | Location-selective incorporation of multiwalled carbon nanotubes in polycarbonate microspheres.<br>Polymer, 2008, 49, 2071-2076.                                              | 1.8  | 29        |
| 86 | Three-dimensionally branched carbon nanowebs as air-cathode for redox-mediated Li-O2 batteries.<br>Carbon, 2017, 118, 114-119.                                                | 5.4  | 29        |
| 87 | All-carbon-based cathode for a true high-energy-density Li-O2 battery. Carbon, 2017, 114, 311-316.                                                                            | 5.4  | 29        |
| 88 | Highly efficient Cr(VI) remediation by cationic functionalized nanocellulose beads. Journal of<br>Hazardous Materials, 2022, 426, 128078.                                     | 6.5  | 29        |
| 89 | High-performance supercapacitors based on freestanding carbon-based composite paper electrodes.<br>Journal of Power Sources, 2014, 246, 540-547.                              | 4.0  | 28        |
| 90 | Fallen-leaf-derived microporous pyropolymers for supercapacitors. Journal of Industrial and Engineering Chemistry, 2017, 45, 223-228.                                         | 2.9  | 28        |

| #   | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Polyaniline nanofiber-coated polystyrene/graphene oxide core-shell microsphere composites.<br>Macromolecular Research, 2012, 20, 84-92.                                                                                                                                              | 1.0 | 27        |
| 92  | Alkylated and restored graphene oxide nanoribbon-reinforced isotactic-polypropylene nanocomposites. Carbon, 2016, 108, 274-282.                                                                                                                                                      | 5.4 | 27        |
| 93  | Dispersion stability of chemically reduced graphene oxide nanoribbons in organic solvents. RSC<br>Advances, 2016, 6, 19389-19393.                                                                                                                                                    | 1.7 | 27        |
| 94  | The effect of chitosan content on the crystallinity, thermal stability, and mechanical properties of<br>bacterial cellulose—chitosan composites. Proceedings of the Institution of Mechanical Engineers,<br>Part C: Journal of Mechanical Engineering Science, 2009, 223, 2225-2230. | 1.1 | 26        |
| 95  | Nitrogen-enriched multimodal porous carbons for supercapacitors, fabricated from inclusion complexes hosted by urea hydrates. RSC Advances, 2012, 2, 4353.                                                                                                                           | 1.7 | 26        |
| 96  | Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries. Materials Letters, 2013, 108, 311-315.                                                                                                    | 1.3 | 26        |
| 97  | Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms.<br>Journal of Power Sources, 2016, 329, 536-545.                                                                                                                                    | 4.0 | 26        |
| 98  | Grafting of polystyrene branches to polyethylene and polypropylene. Journal of Applied Polymer<br>Science, 2002, 83, 1103-1111.                                                                                                                                                      | 1.3 | 25        |
| 99  | Adsorption of multi-walled carbon nanotube onto poly(methyl methacrylate) microsphere and its electrorheology. Diamond and Related Materials, 2006, 15, 1094-1097.                                                                                                                   | 1.8 | 25        |
| 100 | Sericin-derived activated carbon-loaded alginate bead: An effective and recyclable natural<br>polymer-based adsorbent for methylene blue removal. International Journal of Biological<br>Macromolecules, 2018, 120, 906-914.                                                         | 3.6 | 25        |
| 101 | Unique surface morphology of electrospun polystyrene fibers from aN,N-dimethylformamide solution. Macromolecular Research, 2005, 13, 533-537.                                                                                                                                        | 1.0 | 24        |
| 102 | Polyaniline/Silver Nanoparticle-Doped Multiwalled Carbon Nanotube Composites. Journal of Dispersion Science and Technology, 2012, 33, 750-755.                                                                                                                                       | 1.3 | 24        |
| 103 | Magnesiophilic Graphitic Carbon Nanosubstrate for Highly Efficient and Fast-Rechargeable Mg Metal<br>Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38754-38761.                                                                                                           | 4.0 | 24        |
| 104 | Effects of fluoroethylene carbonate-induced solid-electrolyte-interface layers on carbon-based anode materials for potassium ion batteries. Applied Surface Science, 2021, 547, 149193.                                                                                              | 3.1 | 24        |
| 105 | Cellulose nanowhisker-incorporated poly(lactic acid) composites for high thermal stability. Fibers and Polymers, 2013, 14, 1001-1005.                                                                                                                                                | 1.1 | 23        |
| 106 | Synthesis and properties of poly(butylene succinate) withN-hexenyl side branches. Journal of Applied<br>Polymer Science, 2001, 81, 2219-2226.                                                                                                                                        | 1.3 | 22        |
| 107 | Dispersion of Pt Nanoparticle-Doped Reduced Graphene Oxide Using Aniline as a Stabilizer. Materials, 2012, 5, 2927-2936.                                                                                                                                                             | 1.3 | 22        |
| 108 | Enhanced mechanical properties of silk fibroin-based composite plates for fractured bone healing.<br>Fibers and Polymers, 2013, 14, 266-270.                                                                                                                                         | 1.1 | 22        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Sulfur-doped, reduced graphene oxide nanoribbons for sodium-ion batteries. Materials Letters, 2017, 198, 106-109.                                                                                | 1.3 | 22        |
| 110 | Electrolyteâ€Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode. Small, 2020, 16, 2001053.                                                                                            | 5.2 | 22        |
| 111 | Solubility of 1-hexene in LLDPE synthesized by (2-MeInd)2ZrCl2/MAO and by Mg(OEt)2/DIBP/TiCl4-TEA.<br>Journal of Applied Polymer Science, 2002, 84, 1566-1571.                                   | 1.3 | 21        |
| 112 | Poly(methyl methacrylate)/multiwalled carbon nanotube microspheres fabricated via inâ€situ<br>dispersion polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 182-189. | 2.4 | 21        |
| 113 | Flexible Graphene Stacks for Sodiumâ€ion Storage. ChemElectroChem, 2017, 4, 716-720.                                                                                                             | 1.7 | 21        |
| 114 | Pyrolytic Carbon Nanosheets for Ultrafast and Ultrastable Sodiumâ€lon Storage. Small, 2018, 14,<br>1703043.                                                                                      | 5.2 | 21        |
| 115 | Understanding hydroscopic properties of silk fibroin and its use as a gate-dielectric in organic field-effect transistors. Organic Electronics, 2018, 59, 213-219.                               | 1.4 | 21        |
| 116 | Catalytic Pyroprotein Seed Layers for Sodium Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 12401-12407.                                                                            | 4.0 | 21        |
| 117 | 3D-structured organic-inorganic hybrid solid-electrolyte-interface layers for Lithium metal anode.<br>Energy Storage Materials, 2021, 37, 567-575.                                               | 9.5 | 21        |
| 118 | Preparation and characterization of poly[(butylene succinate)-co-(butylene adipate)]/carbon nanotube-coated silk fiber composites. Polymer International, 2007, 56, 1035-1039.                   | 1.6 | 19        |
| 119 | Percolation of two-dimensional multiwall carbon nanotube networks. Applied Physics Letters, 2009, 95, 134104.                                                                                    | 1.5 | 19        |
| 120 | Enhanced impact properties of polylactide by poly(lactide-b-butadiene-b-lactide) triblock copolymer.<br>Macromolecular Research, 2011, 19, 943-947.                                              | 1.0 | 19        |
| 121 | Silk fibroin particles as templates for mineralization of calciumâ€deficient hydroxyapatite. Journal of<br>Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2029-2034.   | 1.6 | 19        |
| 122 | Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals.<br>Macromolecular Research, 2014, 22, 753-756.                                                         | 1.0 | 19        |
| 123 | Preparation and characterization of electrospun poly(l-lactic acid-co-succinic acid-co-1,4-butane diol)<br>fibrous membranes. Macromolecular Research, 2005, 13, 73-79.                          | 1.0 | 18        |
| 124 | Dispersity and stability measurements of functionalized multiwalled carbon nanotubes in organic solvents. Current Applied Physics, 2009, 9, e100-e103.                                           | 1.1 | 18        |
| 125 | Cellulose nanofiber-reinforced silk fibroin composite film with high transparency. Fibers and Polymers, 2014, 15, 215-219.                                                                       | 1.1 | 18        |
| 126 | 3D hierarchical porous carbons containing numerous nitrogen atoms as catalyst supports for PEMFCs. Synthetic Metals, 2012, 162, 2337-2341.                                                       | 2.1 | 17        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Transparent conducting films based on nanofibrous polymeric membranes and singleâ€walled carbon<br>nanotubes. Journal of Applied Polymer Science, 2009, 114, 2864-2872.                                                      | 1.3 | 16        |
| 128 | High-toughness natural polymer nonwoven preforms inspired by silkworm cocoon structure.<br>International Journal of Biological Macromolecules, 2019, 127, 146-152.                                                           | 3.6 | 16        |
| 129 | Atomicâ€Distributed Coordination State of Metalâ€Phenolic Compounds Enabled Low Temperature<br>Graphitization for Highâ€Performance Multioriented Graphite Anode. Small, 2020, 16, e2003104.                                 | 5.2 | 16        |
| 130 | Copolymerization of ethylene/nonconjugated dienes over a Bis(2-methyl indenyl) zirconium<br>dichloride/methylaluminoxane catalyst system. Journal of Applied Polymer Science, 2002, 84, 1048-1058.                           | 1.3 | 15        |
| 131 | Hierarchically nanoporous pyropolymer nanofibers for surface-induced sodium-ion storage.<br>Electrochimica Acta, 2017, 242, 38-46.                                                                                           | 2.6 | 15        |
| 132 | Cationic surface-modified regenerated nanocellulose hydrogel for efficient Cr(VI) remediation.<br>Carbohydrate Polymers, 2022, 278, 118930.                                                                                  | 5.1 | 15        |
| 133 | Critical role of silk fibroin secondary structure on the dielectric performances of organic thin-film transistors. RSC Advances, 2016, 6, 5907-5914.                                                                         | 1.7 | 14        |
| 134 | Nanoconfinement effects of chemically reduced graphene oxide nanoribbons on poly(vinyl chloride).<br>Nanoscale, 2018, 10, 2025-2033.                                                                                         | 2.8 | 14        |
| 135 | Thermal Properties of Poly(ε-Caprolactone)/Multiwalled Carbon Nanotubes Composites. Advanced<br>Composite Materials, 2008, 17, 157-166.                                                                                      | 1.0 | 13        |
| 136 | Morphological effects of alkylated multiwalled carbon nanotubes on poly(L-lactic acid)-based composites. Macromolecular Research, 2010, 18, 828-833.                                                                         | 1.0 | 13        |
| 137 | Promoting Helix-Rich Structure in Silk Fibroin Films through Molecular Interactions with Carbon<br>Nanotubes and Selective Heating for Transparent Biodegradable Devices. ACS Applied Nano Materials,<br>2018, 1, 5441-5450. | 2.4 | 13        |
| 138 | Nano-patching defects of reduced graphene oxide by cellulose nanocrystals in scalable polymer nanocomposites. Carbon, 2020, 165, 18-25.                                                                                      | 5.4 | 13        |
| 139 | Improvement in Barrier Properties Using a Large Lateral Size of Exfoliated Graphene Oxide.<br>Macromolecular Research, 2020, 28, 709-713.                                                                                    | 1.0 | 13        |
| 140 | Effect of cross-linkable bacterial cellulose nanocrystals on the physicochemical properties of silk sericin films. Polymer Testing, 2021, 97, 107161.                                                                        | 2.3 | 13        |
| 141 | Silk Protein-Derived carbon fabric as an electrode with high Electro-Catalytic activity for<br>All-Vanadium redox flow batteries. Applied Surface Science, 2021, 567, 150810.                                                | 3.1 | 13        |
| 142 | High-performance solid-solution potassium-ion intercalation mechanism of multilayered turbostratic graphene nanosheets. Journal of Energy Chemistry, 2022, 67, 814-823.                                                      | 7.1 | 13        |
| 143 | Multiwalled Carbon Nanotube-Reinforced Poly(vinyl chloride). Macromolecular Symposia, 2007, 249-250, 259-264.                                                                                                                | 0.4 | 12        |
| 144 | Electrically conductive transparent films based on nylon 6 membranes and single-walled carbon nanotubes. Current Applied Physics, 2010, 10, S468-S472.                                                                       | 1.1 | 12        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Enhanced dielectric properties of electrospun titanium dioxide/polyvinylidene fluoride nanofibrous composites. Fibers and Polymers, 2013, 14, 1521-1525.                                                 | 1.1  | 12        |
| 146 | Amorphous Carbon Nanotube/MnO <sub>2</sub> /Graphene Oxide Ternary Composite<br>Electrodes for Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2013, 13,<br>1765-1768.            | 0.9  | 12        |
| 147 | Fluorous-inorganic hybrid dielectric materials for solution-processed electronic devices. New<br>Journal of Chemistry, 2015, 39, 836-842.                                                                | 1.4  | 12        |
| 148 | Relationship between Multivalent Cation Charge Carriers and Organic Solvents on Nanoporous<br>Carbons in 4ÂVâ€Window Magnesium Ion Supercapacitors. Advanced Energy Materials, 2021, 11, 2101054.        | 10.2 | 12        |
| 149 | Flow-Induced Liquid Crystalline Solutions Prepared from Aspect Ratio-Controlled Bacterial Cellulose<br>Nanowhiskers. Molecular Crystals and Liquid Crystals, 2010, 519, 141-148.                         | 0.4  | 11        |
| 150 | Nanoporous pyropolymer nanosheets fabricated from renewable bio-resources for supercapacitors.<br>Journal of Industrial and Engineering Chemistry, 2016, 43, 158-163.                                    | 2.9  | 11        |
| 151 | Nitrogen-Rich Magnetic Bio-Activated Carbon from Sericin: A Fast Removable and Easily Separable<br>Superadsorbent for Anionic Dye Removal. Macromolecular Research, 2020, 28, 986-996.                   | 1.0  | 11        |
| 152 | Antioxidant and UV-blocking glucose-crosslinked sericin films with enhanced structural integrity.<br>Reactive and Functional Polymers, 2021, 165, 104942.                                                | 2.0  | 11        |
| 153 | Waste-induced pyrolytic carbon nanotube forest as a catalytic host electrode for high-performance aluminum metal anodes. Chemical Engineering Journal, 2022, 437, 135416.                                | 6.6  | 11        |
| 154 | High-performance Li-ion hybrid supercapacitors based on microporous pyropolymer nanoplates and orthorhombic Nb 2 O 5 nanocomposites. Journal of Industrial and Engineering Chemistry, 2018, 57, 284-289. | 2.9  | 10        |
| 155 | Surface-Modified Cellulose Nanocrystal-incorporated Poly(butylene succinate) Nanocomposites.<br>Fibers and Polymers, 2018, 19, 1395-1402.                                                                | 1.1  | 10        |
| 156 | Effects of Carbon-Based Electrode Materials for Excess Sodium Metal Anode Engineered Rechargeable<br>Sodium Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17697-17706.                  | 3.2  | 10        |
| 157 | Potassium-ion storage behavior of microstructure-engineered hard carbons. Journal of Materials<br>Chemistry A, 2022, 10, 2055-2063.                                                                      | 5.2  | 10        |
| 158 | Polystyrene composites containing crosslinked polystyreneâ€nultiwalled carbon nanotube balls.<br>Journal of Applied Polymer Science, 2008, 110, 3737-3744.                                               | 1.3  | 9         |
| 159 | Incorporation of multiwalled carbon nanotubes on the surface of polystyrene microspheres via In<br>Situ suspension polymerization. Macromolecular Research, 2011, 19, 227-232.                           | 1.0  | 9         |
| 160 | High-performance nanohybrid anode based on FeS2 nanocubes and nitrogen-rich graphene oxide<br>nanoribbons for sodium ion batteries. Journal of Industrial and Engineering Chemistry, 2020, 81, 61-66.    | 2.9  | 9         |
| 161 | Unveiling the pseudocapacitive effects of ultramesopores on nanoporous carbon. Applied Surface Science, 2021, 537, 148037.                                                                               | 3.1  | 9         |
| 162 | Sulfur-enriched, hierarchically nanoporous carbonaceous materials for sodium-ion storage.<br>Synthetic Metals, 2015, 210, 357-362.                                                                       | 2.1  | 8         |

| #   | Article                                                                                                                                                                                                     | IF               | CITATIONS                |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 163 | Energy storage capabilities of nitrogen-enriched pyropolymer nanoparticles fabricated through rapid pyrolysis. Journal of Power Sources, 2016, 331, 507-514.                                                | 4.0              | 8                        |
| 164 | Quantitative characterization of a voltage-dependent pseudocapacitance on heteroatom-enriched nanoporous carbons. Electrochimica Acta, 2019, 302, 71-77.                                                    | 2.6              | 8                        |
| 165 | Multiscale Hybridization of Natural Silk–Nanocellulose Fibrous Composites With Exceptional<br>Mechanical Properties. Frontiers in Materials, 2020, 7, .                                                     | 1.2              | 8                        |
| 166 | Microspherical Poly(methyl methacrylate)/Multiwalled Carbon Nanotube Composites Prepared via<br><i>In Situ</i> Dispersion Polymerization. Journal of Nanoscience and Nanotechnology, 2007, 7,<br>4045-4048. | 0.9              | 7                        |
| 167 | Preparation of carbon nanotubes-incorporated polymeric microspheres for electrorheological fluids. Current Applied Physics, 2008, 8, 807-809.                                                               | 1.1              | 7                        |
| 168 | Synthesis and Electrorheological Response of Graphene Oxide/Polydiphenylamine Microsheet<br>Composite Particles. Polymers, 2020, 12, 1984.                                                                  | 2.0              | 7                        |
| 169 | Dual Electrorheological and Magnetorheological Behaviors of Poly(N-methyl aniline) Coated<br>ZnFe2O4 Composite Particles. Materials, 2022, 15, 2677.                                                        | 1.3              | 7                        |
| 170 | Nanoconfinement effect of nanoporous carbon electrodes for ionic liquid-based aluminum metal<br>anode. Journal of Energy Chemistry, 2022, 74, 121-127.                                                      | 7.1              | 7                        |
| 171 | Preparation of Aspect Ratio-Controlled Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 2009, 510, 79/[1213]-86/[1220].                                                                            | 0.4              | 6                        |
| 172 | Lithiumâ€Metal Anodes: Advances in the Design of 3Dâ€Structured Electrode Materials for Lithiumâ€Metal<br>Anodes (Adv. Mater. 51/2020). Advanced Materials, 2020, 32, 2070386.                              | 11.1             | 6                        |
| 173 | Morphologies and surface properties of cellulose-based activated carbon nanoplates. Carbon Letters, 2016, 20, 32-38.                                                                                        | 3.3              | 6                        |
| 174 | SILK FIBROIN FILMS CRYSTALLIZED BY MULTIWALLED CARBON NANOTUBES. International Journal of Modern Physics B, 2008, 22, 1807-1812.                                                                            | 1.0              | 5                        |
| 175 | DISPERSITY AND STABILITY MEASUREMENT OF FUNCTIONALIZED MULTIWALLED CARBON NANOTUBES IN ALCOHOLS. Modern Physics Letters B, 2008, 22, 2493-2501.                                                             | 1.0              | 5                        |
| 176 | Electrically Conductive Polymeric Nanocomposites Prepared in Alcohol Dispersion of Multiwalled<br>Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 2008, 491, 255-263.                             | 0.4              | 5                        |
| 177 | Sodiumâ€lon Batteries: Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes (Adv.) Tj ETQq1                                                                                                   | 1 0,7843<br>10.2 | 14 <sub>5</sub> rgBT /Ov |
| 178 | Pyroprotein-based electronic textiles with high thermal durability. Materials Today, 2018, 21, 944-950.                                                                                                     | 8.3              | 5                        |
| 179 | Standalone macroporous graphitic nanowebs for vanadium redox flow batteries. Journal of Industrial and Engineering Chemistry, 2018, 60, 85-90.                                                              | 2.9              | 5                        |
| 180 | Sodium metal hybrid capacitors based on nanostructured carbon materials. Journal of Power Sources, 2019, 418, 218-224.                                                                                      | 4.0              | 5                        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Surface-driven charge storage behaviors of Kenaf-derived carbon electrodes with hierarchical porous structure for lithium-ion capacitors. Applied Surface Science, 2021, 544, 148979.                                                | 3.1 | 5         |
| 182 | Preparation and Characterization of Poly( <i>p</i> -phenylene terephthalamide)/Multiwalled Carbon<br>Nanotube Composites via <i>in-situ</i> Polymerization. Molecular Crystals and Liquid Crystals, 2008,<br>492, 20/[384]-27/[391]. | 0.4 | 4         |
| 183 | ELECTROCONDUCTIVE ADHESIVES BASED ON POLYURETHANE WITH MULTIWALLED CARBON NANOTUBES.<br>Modern Physics Letters B, 2009, 23, 3739-3745.                                                                                               | 1.0 | 4         |
| 184 | Controlling the Aspect Ratio of Silver Nanowires by Variation of<br>Polyvinylpyrrolidone/AgNO <sub>3</sub> Contents. Molecular Crystals and Liquid Crystals, 2012, 566,<br>112-119.                                                  | 0.4 | 4         |
| 185 | Pentacene crystal formation on the surface of silk fibroin films. Fibers and Polymers, 2013, 14, 2006-2009.                                                                                                                          | 1.1 | 4         |
| 186 | All-Fibrous Pyroprotein-Based Monolithic Electrodes Containing Heteroatoms for Sodium-Ion Hybrid<br>Capacitors. Macromolecular Research, 2019, 27, 497-503.                                                                          | 1.0 | 4         |
| 187 | Waste Sawdust-Derived Nanoporous Carbon as a Positive Electrode for Lithium-Ion Storage.<br>Macromolecular Research, 2020, 28, 1204-1210.                                                                                            | 1.0 | 4         |
| 188 | Silk Sericin-Polyethyleneimine Hybrid Hydrogel with Excellent Structural Stability for Cr(VI) Removal.<br>Macromolecular Research, 2021, 29, 895-904.                                                                                | 1.0 | 4         |
| 189 | Carbon Nanotube-Organized Polymeric Fibers and Measurement of Their Electrical Conductivity.<br>Molecular Crystals and Liquid Crystals, 2007, 464, 15/[597]-21/[603].                                                                | 0.4 | 3         |
| 190 | Free-standing graphene-based nanohybrid paper electrode as an anode for lithium-ion batteries. RSC<br>Advances, 2014, 4, 38310-38315.                                                                                                | 1.7 | 3         |
| 191 | Corn Stem-Derived, Hierarchically Nanoporous Carbon as Electrode Material for Supercapacitors.<br>Journal of Nanoscience and Nanotechnology, 2017, 17, 7729-7734.                                                                    | 0.9 | 3         |
| 192 | Synergistic combination of nanostructured sodium metal anode and capacitive cathode for advanced non-aqueous hybrid capacitors. Applied Surface Science, 2020, 513, 145848.                                                          | 3.1 | 3         |
| 193 | Electrically Conducting Polymeric Microspheres Prepared by Adsorption of Multiwalled Carbon<br>Nanotubes. Molecular Crystals and Liquid Crystals, 2007, 464, 57/[639]-64/[646].                                                      | 0.4 | 2         |
| 194 | Electrically Conductive Polymeric Membranes by Incorporation of Carbon Nanotubes. Molecular<br>Crystals and Liquid Crystals, 2007, 464, 103/[685]-108/[690].                                                                         | 0.4 | 2         |
| 195 | Real-time observation of electrorheological fluids using synchrotron X-ray imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 557-561.                                                        | 2.3 | 2         |
| 196 | 3-D ordered bimodal porous carbon/nickel oxide hybrid electrodes for supercapacitors. Synthetic Metals, 2013, 177, 105-109.                                                                                                          | 2.1 | 2         |
| 197 | 3D interconnected macrostructure based on nano-scale pyroprotein units for energy storage.<br>Electrochimica Acta, 2016, 222, 1887-1894.                                                                                             | 2.6 | 2         |
| 198 | Intagliated Cu substrate containing multifunctional lithiophilic trenches for Li metal anodes.<br>Chemical Engineering Journal, 2022, 428, 130939.                                                                                   | 6.6 | 2         |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Highâ€Performance Asymmetric Liâ€ion Pseudocapacitors Based on Pyroprotein Nanowebs.<br>ChemElectroChem, 2017, 4, 2079-2083.                                                                                                          | 1.7  | 1         |
| 200 | Lithium Ion Batteries: Atomicâ€Distributed Coordination State of Metalâ€Phenolic Compounds Enabled<br>Low Temperature Graphitization for Highâ€Performance Multioriented Graphite Anode (Small 33/2020).<br>Small, 2020, 16, 2070182. | 5.2  | 1         |
| 201 | Properties of aliphatic polyesters with n-paraffinic side branches. , 2000, 77, 547.                                                                                                                                                  |      | 1         |
| 202 | Improved Moisture Barrier Performance in Poly(vinylidene chloride) Film by Controlling<br>Hydrophobicity of Graphene Oxide. Porrime, 2018, 42, 377-384.                                                                               | 0.0  | 1         |
| 203 | Sodium Metal Batteries: Anodeâ€Free Sodium Metal Batteries Based on Nanohybrid Core–Shell Templates<br>(Small 37/2019). Small, 2019, 15, 1970201.                                                                                     | 5.2  | 0         |
| 204 | Relationship between Multivalent Cation Charge Carriers and Organic Solvents on Nanoporous<br>Carbons in 4ÂVâ€Window Magnesium Ion Supercapacitors (Adv. Energy Mater. 30/2021). Advanced Energy<br>Materials, 2021, 11, 2170122.     | 10.2 | 0         |