Laurent Bacri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3239726/publications.pdf Version: 2024-02-01

LALIDENT RACDI

#	Article	IF	CITATIONS
1	Focus on using nanopore technology for societal health, environmental, and energy challenges. Nano Research, 2022, 15, 9906-9920.	5.8	11
2	Selective target protein detection using a decorated nanopore into a microfluidic device. Biosensors and Bioelectronics, 2021, 183, 113195.	5.3	17
3	Single-sulfur atom discrimination of polysulfides with a protein nanopore for improved batteries. Communications Materials, 2020, 1, .	2.9	36
4	The Promise of Nanopore Technology: Advances in the Discrimination of Protein Sequences and Chemical Modifications. Small Methods, 2020, 4, 2000090.	4.6	40
5	Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sensors, 2019, 4, 530-548.	4.0	47
6	Biomimetic ion channels formation by emulsion based on chemically modified cyclodextrin nanotubes. Faraday Discussions, 2018, 210, 41-54.	1.6	8
7	Solid-State Nanopore Easy Chip Integration in a Cheap and Reusable Microfluidic Device for Ion Transport and Polymer Conformation Sensing. ACS Sensors, 2018, 3, 2129-2137.	4.0	21
8	Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and \$ alpha\$l±-hemolysin nanopores⋆. European Physical Journal E, 2018, 41, 127.	0.7	12
9	From current trace to the understanding of confined media. European Physical Journal E, 2018, 41, 99.	0.7	4
10	Versatile cyclodextrin nanotube synthesis with functional anchors for efficient ion channel formation: design, characterization and ion conductance. Nanoscale, 2018, 10, 15303-15316.	2.8	11
11	Dynamics of a polyelectrolyte through aerolysin channel as a function of applied voltage and concentrationâ<†. European Physical Journal E, 2018, 41, 58.	0.7	1
12	Functionalized Solid-State Nanopore Integrated in a Reusable Microfluidic Device for a Better Stability and Nanoparticle Detection. ACS Applied Materials & Interfaces, 2017, 9, 41634-41640.	4.0	42
13	Nanoparticle Electrical Analysis and Detection with a Solid-state Nanopore in a Microfluidic Device. Procedia Engineering, 2016, 168, 1475-1478.	1.2	3
14	High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore. ACS Nano, 2015, 9, 6443-6449.	7.3	106
15	Biomimetic Nanotubes Based on Cyclodextrins for Ion-Channel Applications. Nano Letters, 2015, 15, 7748-7754.	4.5	30
16	Electroosmosis through α-Hemolysin That Depends on Alkali Cation Type. Journal of Physical Chemistry Letters, 2014, 5, 4362-4367.	2.1	42
17	Focus on Protein Unfolding Through Nanopores. BioNanoScience, 2014, 4, 111-118.	1.5	23
18	Protein Unfolding Through Nanopores. Protein and Peptide Letters, 2014, 21, 266-274.	0.4	11

LAURENT BACRI

#	Article	IF	CITATIONS
19	Kinetics of Enzymatic Degradation of High Molecular Weight Polysaccharides through a Nanopore: Experiments and Data-Modeling. Analytical Chemistry, 2013, 85, 8488-8492.	3.2	67
20	Exploration of Neutral Versus Polyelectrolyte Behavior of Poly(ethylene glycol)s in Alkali Ion Solutions using Single-Nanopore Recording. Journal of Physical Chemistry Letters, 2013, 4, 2202-2208.	2.1	49
21	Transport of Long Neutral Polymers in the Semidilute Regime through a Protein Nanopore. Physical Review Letters, 2012, 108, 088104.	2.9	35
22	Sensing Proteins through Nanopores: Fundamental to Applications. ACS Chemical Biology, 2012, 7, 1935-1949.	1.6	164
23	Protein Transport through a Narrow Solid-State Nanopore at High Voltage: Experiments and Theory. ACS Nano, 2012, 6, 6236-6243.	7.3	126
24	Single Molecule Detection of Glycosaminoglycan Hyaluronic Acid Oligosaccharides and Depolymerization Enzyme Activity Using a Protein Nanopore. ACS Nano, 2012, 6, 9672-9678.	7.3	74
25	DNA Unzipping and Protein Unfolding Using Nanopores. Methods in Molecular Biology, 2012, 870, 55-75.	0.4	4
26	Dynamics of Completely Unfolded and Native Proteins through Solid-State Nanopores as a Function of Electric Driving Force. ACS Nano, 2011, 5, 3628-3638.	7.3	175
27	Dynamics of Colloids in Single Solid-State Nanopores. Journal of Physical Chemistry B, 2011, 115, 2890-2898.	1.2	86
28	Discrimination of neutral oligosaccharides through a nanopore. Biochemical and Biophysical Research Communications, 2011, 412, 561-564.	1.0	29
29	Unexpected Interactions of an Alternating Poly(etherâ€ester) with Artificial and Biological Bilipidic Membranes. Macromolecular Symposia, 2010, 287, 60-68.	0.4	4
30	Direct FIB fabrication and integration of "single nanopore devices―for the manipulation of macromolecules. Microelectronic Engineering, 2010, 87, 1300-1303.	1.1	33
31	Tailoring nanopores for efficient sensing of different biomolecules. Materials Research Society Symposia Proceedings, 2010, 1253, 33.	0.1	1
32	Direct FIB fabrication and integration of "single nanopore devices―for the manipulation of macromolecules. Materials Research Society Symposia Proceedings, 2009, 1191, 78.	0.1	2
33	Effect of screening on the transport of polyelectrolytes through nanopores. Europhysics Letters, 2008, 82, 48003.	0.7	47
34	Dynamics of Polyelectrolyte Transport through a Protein Channel as a Function of Applied Voltage. Physical Review Letters, 2008, 100, 158302.	2.9	62
35	Tuning Macromolecular Structures of Synthetic Vectors for Gene Therapy. Macromolecular Symposia, 2008, 261, 167-181.	0.4	12
36	Unfolding of Proteins and Long Transient Conformations Detected by Single Nanopore Recording. Physical Review Letters, 2007, 98, 158101.	2.9	258

LAURENT BACRI

#	Article	IF	CITATIONS
37	Ionic Channel Behavior of Modified Cyclodextrins Inserted in Lipid Membranes. Langmuir, 2005, 21, 5842-5846.	1.6	35
38	Dewetting on porous media. Europhysics Letters, 2001, 56, 414-419.	0.7	9
39	Droplet suction on porous media. European Physical Journal E, 2000, 3, 87-97.	0.7	37
40	Experimental Study of the Spreading of a Viscous Droplet on a Nonviscous Liquid. Langmuir, 1996, 12, 6708-6711.	1.6	22