A Nayak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3239516/publications.pdf Version: 2024-02-01

Λ ΝΑΧΑΡ

#	Article	IF	CITATIONS
1	Fabrication of chitosan-hydroxyapatite nano-adsorbent for removal of norfloxacin from water: Isotherm and kinetic studies. Materials Today: Proceedings, 2022, 61, 143-149.	1.8	9
2	Wetland Ecosystems and Their Relevance to the Environment. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 1-16.	0.4	1
3	Nano-Bioremediation Technologies for Potential Application in Soil Reclamation. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 510-529.	0.4	0
4	Nanomaterials for Energy Harvesting and Storage. Advances in Chemical and Materials Engineering Book Series, 2021, , 188-203.	0.3	3
5	Sustainable Solid Waste Management via Biological Treatment. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 248-271.	0.4	0
6	Fabrication of microwave assisted biogenic magnetite-biochar nanocomposite: A green adsorbent from jackfruit peel for removal and recovery of nutrients in water sample. Journal of Industrial and Engineering Chemistry, 2021, 100, 134-148.	5.8	16
7	An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 2019, 233, 352-370.	7.8	261
8	Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics. Food and Bioproducts Processing, 2018, 109, 74-85.	3.6	70
9	Recovery of polyphenols onto porous carbons developed from exhausted grape pomace: A sustainable approach for the treatment of wine wastewaters. Water Research, 2018, 145, 741-756.	11.3	42
10	Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution. International Journal of Astrobiology, 2017, 16, 143-155.	1.6	2
11	Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions. Journal of Colloid and Interface Science, 2017, 493, 228-240.	9.4	172
12	Role of manganese oxides in peptide synthesis: implication in chemical evolution. International Journal of Astrobiology, 2017, 16, 360-367.	1.6	3
13	Development of a green and sustainable clean up system from grape pomace for heavy metal remediation. Journal of Environmental Chemical Engineering, 2016, 4, 4342-4353.	6.7	20
14	A Critical Analysis on the Efficiency of Activated Carbons from Low-Cost Precursors for Heavy Metals Remediation. Critical Reviews in Environmental Science and Technology, 2015, 45, 613-668.	12.8	91
15	Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions. Journal of Colloid and Interface Science, 2014, 417, 420-430.	9.4	409
16	Biosorption and Reuse Potential of a Blue Green Alga for the Removal of Hazardous Reactive Dyes from Aqueous Solutions. Bioremediation Journal, 2014, 18, 179-191.	2.0	40
17	Removal of Ni (II) ions from water using scrap tire. Journal of Molecular Liquids, 2014, 190, 215-222.	4.9	121
18	Toxic metal ions in water and their prevalence in Uttarakhand, India. Water Science and Technology: Water Supply, 2012, 12, 773-782.	2.1	8

Α Ναγακ

#	Article	IF	CITATIONS
19	Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chemical Engineering Journal, 2012, 197, 330-342.	12.7	105
20	Arsenic speciation analysis and remediation techniques in drinking water. Desalination and Water Treatment, 2012, 40, 231-243.	1.0	31
21	Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2012, 2, 6380.	3.6	1,313
22	Advanced and Hyphenated Techniques for Nano-Level Analysis of Iron in Water. Critical Reviews in Analytical Chemistry, 2012, 42, 245-256.	3.5	8
23	Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 2012, 180, 81-90.	12.7	835
24	Photodegradation of hazardous dye quinoline yellow catalyzed by TiO2. Journal of Colloid and Interface Science, 2012, 366, 135-140.	9.4	98
25	Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering C, 2012, 32, 12-17.	7.3	664
26	Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Research, 2011, 45, 4047-4055.	11.3	352
27	Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes. Critical Reviews in Analytical Chemistry, 2011, 41, 282-313.	3.5	550
28	Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering C, 2011, 31, 1062-1067.	7.3	773
29	A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazardous Materials, 2011, 186, 891-901.	12.4	588
30	Equilibrium and Thermodynamic Studies on the Removal and Recovery of Safranine-T Dye from Industrial Effluents. Separation Science and Technology, 2011, 46, 839-846.	2.5	69
31	Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science, 2010, 342, 135-141.	9.4	520
32	Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. Journal of Colloid and Interface Science, 2010, 342, 533-539.	9.4	436
33	Adsorption–desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal. Journal of Colloid and Interface Science, 2010, 348, 628-633.	9.4	59
34	Equilibrium and Thermodynamic Studies on the Adsorption of the Dye Tartrazine onto Waste "Coconut Husks―Carbon and Activated Carbon. Journal of Chemical & Engineering Data, 2010, 55, 5083-5090.	1.9	62