Fariba M Assadi-Porter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3238965/publications.pdf

Version: 2024-02-01

393982 395343 1,149 36 19 33 citations g-index h-index papers 39 39 39 1270 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors. Journal of Biological Chemistry, 2013, 288, 32475-32489.	1.6	110
2	Key Amino Acid Residues Involved in Multi-Point Binding Interactions between Brazzein, a Sweet Protein, and the T1R2–T1R3 Human Sweet Receptor. Journal of Molecular Biology, 2010, 398, 584-599.	2.0	104
3	Sweetness Determinant Sites of Brazzein, a Small, Heat-Stable, Sweet-Tasting Protein. Archives of Biochemistry and Biophysics, 2000, 376, 259-265.	1.4	96
4	Efficient Production of Recombinant Brazzein, a Small, Heat-Stable, Sweet-Tasting Protein of Plant Origin. Archives of Biochemistry and Biophysics, 2000, 376, 252-258.	1.4	75
5	Direct NMR Detection of the Binding of Functional Ligands to the Human Sweet Receptor, a Heterodimeric Family 3 GPCR. Journal of the American Chemical Society, 2008, 130, 7212-7213.	6.6	70
6	Critical regions for the sweetness of brazzein 1. FEBS Letters, 2003, 544, 33-37.	1.3	63
7	The Hibernator Microbiome: Host-Bacterial Interactions in an Extreme Nutritional Symbiosis. Annual Review of Nutrition, 2017, 37, 477-500.	4.3	58
8	Interactions between the human sweet-sensing T1R2–T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 82-86.	1.4	53
9	Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. Current Metabolomics, 2014, 1, 269-278.	0.5	51
10	Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in E. coli. Protein Expression and Purification, 2008, 58, 263-268.	0.6	45
11	Ligand-Specific Structural Changes in the Vitamin D Receptor in Solution. Biochemistry, 2011, 50, 11025-11033.	1.2	45
12	Use of NMR Saturation Transfer Difference Spectroscopy to Study Ligand Binding to Membrane Proteins. Methods in Molecular Biology, 2012, 914, 47-63.	0.4	38
13	Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season. Science, 2022, 375, 460-463.	6.0	36
14	Monkey Electrophysiological and Human Psychophysical Responses to Mutants of the Sweet Protein Brazzein: Delineating Brazzein Sweetness. Chemical Senses, 2003, 28, 491-498.	1.1	30
15	Correlation of the Sweetness of Variants of the Protein Brazzein with Patterns of Hydrogen Bonds Detected by NMR Spectroscopy. Journal of Biological Chemistry, 2003, 278, 31331-31339.	1.6	30
16	Metabolic Reprogramming by 3-lodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. International Journal of Molecular Sciences, 2018, 19, 1535.	1.8	29
17	NMR Metabolomics Show Evidence for Mitochondrial Oxidative Stress in a Mouse Model of Polycystic Ovary Syndrome. Journal of Proteome Research, 2015, 14, 3284-3291.	1.8	22
18	Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiological Reports, 2017, 5, e13097.	0.7	20

#	Article	IF	CITATIONS
19	Brazzein, a Small, Sweet Protein: Effects of Mutations on its Structure, Dynamics and Functional Properties. Chemical Senses, 2005, 30, i90-i91.	1.1	19
20	Structureâ€function relationships of brazzein variants with altered interactions with the human sweet taste receptor. Protein Science, 2016, 25, 711-719.	3.1	19
21	Novel diagnostics of metabolic dysfunction detected in breath and plasma by selective isotope-assisted labeling. Metabolism: Clinical and Experimental, 2012, 61, 1162-1170.	1.5	18
22	One-step purification of bacterially expressed recombinant transducin \hat{l}_{\pm} -subunit and isotopically labeled PDE6 \hat{l}^3 -subunit for NMR analysis. Protein Expression and Purification, 2007, 51, 187-197.	0.6	17
23	Temperatureâ€dependent conformational change affecting Tyr11 and sweetness loops of brazzein. Proteins: Structure, Function and Bioinformatics, 2013, 81, 919-925.	1.5	15
24	Lipolytic Effects of 3-Iodothyronamine (T1AM) and a Novel Thyronamine-Like Analog SG-2 through the AMPK Pathway. International Journal of Molecular Sciences, 2019, 20, 4054.	1.8	13
25	Optical imaging of mitochondrial redox state in rodent models with 3-iodothyronamine. Experimental Biology and Medicine, 2014, 239, 151-158.	1.1	12
26	Uptake of 3-iodothyronamine hormone analogs inhibits the growth and viability of cancer cells. FEBS Open Bio, 2017, 7, 587-601.	1.0	12
27	Effects of Repeated Sublethal External Exposure to Deep Water Horizon Oil on the Avian Metabolome. Scientific Reports, 2019, 9, 371.	1.6	11
28	Shifts in metabolic fuel use coincide with maximal rates of ventilation and body surface rewarming in an arousing hibernator. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R764-R775.	0.9	10
29	Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules, 2018, 23, 2531.	1.7	9
30	Structural Role of the Terminal Disulfide Bond in the Sweetness of Brazzein. Chemical Senses, 2011, 36, 821-830.	1.1	8
31	How Sweet It Is: Detailed Molecular and Functional Studies of Brazzein, a Sweet Protein and Its Analogs. ACS Symposium Series, 2008, , 560-572.	0.5	5
32	NMRFAM-SDF: a protein structure determination framework. Journal of Biomolecular NMR, 2015, 62, 481-495.	1.6	4
33	Efficient stable isotope labeling and purification of vitamin D receptor from inclusion bodies. Protein Expression and Purification, 2012, 85, 25-31.	0.6	2
34	Meet Our Editors. Current Metabolomics, 2016, 4, 83-85.	0.5	0
35	Changes in small molecular weight biomarkers identified by NMR spectroscopy in response to dietary treatment with two conjugated linoleic acid isomers (c9,t11; t10,c12) in a murine collagenâ€induced arthritis model. FASEB Journal, 2010, 24, .	0.2	0
36	Functional changes in the gut microbiota across the hibernation cycle examined by stable isotopeâ€assisted labeling. FASEB Journal, 2018, 32, 534.19.	0.2	0