
Sarah L Pallas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3238517/publications.pdf Version: 2024-02-01

SADAH | DALLAS

#	Article	IF	CITATIONS
1	TrkB Activation during a Critical Period Mimics the Protective Effects of Early Visual Experience on Perception and the Stability of Receptive Fields in Adult Superior Colliculus. Journal of Neuroscience, 2019, 39, 4475-4488.	3.6	5
2	Dynamic Alterations of Retinal EphA5 Expression in Retinocollicular Map Plasticity. Developmental Neurobiology, 2019, 79, 252-267.	3.0	0
3	The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry. Frontiers in Neuroscience, 2017, 11, 344.	2.8	3
4	Visual experience prevents dysregulation of GABA _B receptor-dependent short-term depression in adult superior colliculus. Journal of Neurophysiology, 2015, 113, 2049-2061.	1.8	8
5	Refinement but Not Maintenance of Visual Receptive Fields Is Independent of Visual Experience. Cerebral Cortex, 2015, 25, 904-917.	2.9	35
6	Regulation of ephrinâ€A expression in compressed retinocollicular maps. Developmental Neurobiology, 2013, 73, 274-296.	3.0	8
7	Cross-Modal Plasticity Results in Increased Inhibition in Primary Auditory Cortical Areas. Neural Plasticity, 2013, 2013, 1-18.	2.2	11
8	Compromise of Auditory Cortical Tuning and Topography after Cross-Modal Invasion by Visual Inputs. Journal of Neuroscience, 2012, 32, 10338-10351.	3.6	5
9	Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas. Journal of Neurophysiology, 2011, 105, 1558-1573.	1.8	21
10	Inhibitory plasticity underlies visual deprivation-induced loss of receptive field refinement in the adult superior colliculus. European Journal of Neuroscience, 2011, 33, 58-68.	2.6	14
11	Development of the Auditory Cortex. , 2011, , 443-463.		7
12	Developmental Plasticity of Inhibitory Receptive Field Properties in the Auditory and Visual Systems. , 2010, , 71-89.		2
13	Inhibitory Plasticity Facilitates Recovery of Stimulus Velocity Tuning in the Superior Colliculus after Chronic NMDA Receptor Blockade. Journal of Neuroscience, 2007, 27, 7275-7283.	3.6	8
14	Early visual experience prevents but cannot reverse deprivation-induced loss of refinement in adult superior colliculus. Visual Neuroscience, 2006, 23, 845-852.	1.0	16
15	Developmental Plasticity of Inhibitory Circuitry. Journal of Neuroscience, 2006, 26, 10358-10361.	3.6	16
16	Dark rearing reveals the mechanism underlying stimulus size tuning of superior colliculus neurons. Visual Neuroscience, 2006, 23, 741-748.	1.0	14
17	Influence of Thalamocortical Activity on Sensory Cortical Development and Plasticity. , 2006, , 120-137.		1
18	Visual Experience Is Necessary for Maintenance But Not Development of Receptive Fields in Superior Colliculus. Journal of Neurophysiology, 2005, 94, 1962-1970.	1.8	46

SARAH L PALLAS

#	Article	IF	CITATIONS
19	Neural Mechanisms of Stimulus Velocity Tuning in the Superior Colliculus. Journal of Neurophysiology, 2005, 94, 3573-3589.	1.8	21
20	A Digital Atlas to Characterize the Mouse Brain Transcriptome. PLoS Computational Biology, 2005, 1, e41.	3.2	56
21	A Digital Atlas to Characterize the Mouse Brain Transcriptome. PLoS Computational Biology, 2005, preprint, e41.	3.2	0
22	The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats. Journal of Chemical Neuroanatomy, 2004, 27, 129-138.	2.1	55
23	NMDA Receptor Blockade in the Superior Colliculus Increases Receptive Field Size Without Altering Velocity and Size Tuning. Journal of Neurophysiology, 2003, 90, 110-119.	1.8	24
24	Intrinsic and extrinsic factors that shape neocortical specification. Trends in Neurosciences, 2001, 24, 417-423.	8.6	154
25	Cortical specification makes sense. Behavioral and Brain Sciences, 2001, 24, 234-234.	0.7	0
26	NMDA Antagonists in the Superior Colliculus Prevent Developmental Plasticity But Not Visual Transmission or Map Compression. Journal of Neurophysiology, 2001, 86, 1179-1194.	1.8	55
27	Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: Immunocytochemical localization of calbindin- and parvalbumin-containing neurons. , 2000, 422, 140-157.		68
28	Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 2000, 404, 871-876.	27.8	414
29	Cross-Modal Reorganization of Horizontal Connectivity in Auditory Cortex without Altering Thalamocortical Projections. Journal of Neuroscience, 1999, 19, 7940-7950.	3.6	100
30	Cross-modal reorganization of callosal connectivity without altering thalamocortical projections. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8751-8756.	7.1	82
31	Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: Immunocytochemical localization of GABAergic neurons. Journal of Comparative Neurology, 1999, 409, 261-273.	1.6	57
32	Regulation of retinal ganglion cell axon arbor size by target availability: Mechanisms of compression and expansion of the retinotectal projection. Journal of Comparative Neurology, 1994, 344, 581-597.	1.6	56
33	Morphology of retinal axons induced to arborize in a novel target, the medial geniculate nucleus. I. Comparison with arbors in normal targets. Journal of Comparative Neurology, 1994, 349, 343-362.	1.6	19
34	Morphology of retinal axon arbors induced to arborize in a novel target, the medial geniculate nucleus. II. Comparison with axons from the inferior colliculus. Journal of Comparative Neurology, 1994, 349, 363-376.	1.6	24
35	Visual projections induced into the auditory pathway of ferrets: II. Corticocortical connections of primary auditory cortex. Journal of Comparative Neurology, 1993, 337, 317-333.	1.6	56
36	Visual Inputs and Information Processing in Sensory Cortex: An in vivo Developmental Study. , 1993, ,		0

167-178.

SARAH L PALLAS

#	Article	IF	CITATIONS
37	Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex. Journal of Neuroscience, 1992, 12, 3651-3664.	3.6	183
38	Compensation for population size mismatches in the hamster retinotectal system: Alterations in the organization of retinal projections. Visual Neuroscience, 1991, 6, 271-281.	1.0	20
39	Cross-Modal Plasticity in Sensory Cortex. , 1991, , 205-218.		3
40	Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (Al) from the LP/pulvinar complex and the topography of the MGN-AI projection. Journal of Comparative Neurology, 1990, 298, 50-68.	1.6	117
41	A map of visual space induced in primary auditory cortex. Science, 1990, 250, 818-820.	12.6	277
42	Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex. Trends in Neurosciences, 1990, 13, 227-233.	8.6	213
43	Conservation of receptive-field properties of superior colliculus cells after developmental rearrangements of retinal input. Visual Neuroscience, 1989, 2, 121-135.	1.0	61
44	Control of cell number in the developing mammalian visual system. Progress in Neurobiology, 1989, 32, 207-234.	5.7	94
45	Control of cell number in the developing neocortex. I. Effects of early tectal ablation. Developmental Brain Research, 1988, 43, 1-11.	1.7	24
46	Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket,Teleogryllus oceanicus. Journal of Comparative Neurology, 1986, 248, 348-359.	1.6	27
47	The rapid tail flattening component of MGF-mediated escape behavior in the earthworm, Lumbricus terrestris. Comparative Biochemistry and Physiology A, Comparative Physiology, 1981, 70, 57-64.	0.6	11
48	Longitudinal variations in MGF-mediated giant motor neuron activity and rapid escape shortening in intact earthworms. Comparative Biochemistry and Physiology A, Comparative Physiology, 1980, 67, 659-665.	0.6	14
49	Invasion of ectopic visual inputs compromises auditory function in primary auditory cortex. Frontiers in Neuroscience, 0, 4, .	2.8	1