Carlos G Dosoretz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3238128/publications.pdf Version: 2024-02-01

8.2

32

#	Article	IF	CITATIONS
1	A tailored permeable reactive bio-barrier for <i>in situ</i> groundwater remediation: removal of 3-chlorophenol as a case study. Environmental Technology (United Kingdom), 2022, 43, 1200-1210.	2.2	6
2	Coupled electrochemical transformation and filtration of water pollutants by cathodic-carbon nanotube membranes. Journal of Environmental Chemical Engineering, 2022, 10, 107670.	6.7	11
3	Controlling nitritation in a continuous split-feed/aeration biofilm nitrifying bioreactor. Bioresource Technology, 2019, 288, 121599.	9.6	4
4	Integrated treatment of reverse osmosis brines coupling electrocoagulation with advanced oxidation processes. Chemical Engineering Journal, 2019, 356, 771-780.	12.7	39
5	Modification of a polypropylene feed spacer with metal oxide-thin film by chemical bath deposition for biofouling control in membrane filtration. Journal of Membrane Science, 2019, 573, 511-519.	8.2	21
6	Synthesis, characterization and performance of polystyrene/PMMA blend membranes for potential water treatment. Desalination, 2018, 431, 35-46.	8.2	21
7	Characterization of a support-free carbon nanotube-microporous membrane for water and wastewater filtration. Separation and Purification Technology, 2018, 202, 1-8.	7.9	26
8	Low voltage electric potential as a driving force to hinder biofouling in self-supporting carbon nanotube membranes. Water Research, 2018, 129, 143-153.	11.3	52
9	Production of biochar from olive mill solid waste for heavy metal removal. Bioresource Technology, 2017, 244, 759-767.	9.6	81
10	Membranes in wastewater treatment. , 2017, , 129-154.		0
11	Identification of transformation products during advanced oxidation of diatrizoate: Effect of water matrix and oxidation process. Water Research, 2016, 103, 424-434.	11.3	16
12	Paracetamol biodegradation by activated sludge and photocatalysis and its removal by a micelle–clay complex, activated charcoal, and reverse osmosis membranes. Environmental Technology (United) Tj ETQq0 0 0 r	g B T2/Over	lo £a 10 Tf 50
13	Subcritical hydrothermal pretreatment of olive mill solid waste for biofuel production. Bioresource Technology, 2016, 199, 164-172.	9.6	25
14	Bioelectricity inhibits back diffusion from the anolyte into the desalinated stream in microbial desalination cells. Water Research, 2016, 88, 266-273.	11.3	34
15	Biofouling suppression of modified feed spacers: Localized and long-distance antibacterial activity. Desalination, 2016, 393, 159-165.	8.2	11
16	Transformation of X-ray contrast media in reverse osmosis brines by advanced oxidation processes. Desalination and Water Treatment, 2015, 55, 2369-2376.	1.0	6
17	Phosphate adsorption on granular ferric hydroxide to increase product water recovery in reverse osmosis-desalination of secondary effluents. Desalination, 2015, 364, 53-61.	8.2	29
	Experimental characterization and numerical simulation of the anti-biofuling activity of		

Experimental characterization and numerical simulation of the anti-biofuling activity of nanosilver-modified feed spacers in membrane filtration. Journal of Membrane Science, 2015, 475, 320-329.

CARLOS G DOSORETZ

#	Article	IF	CITATIONS
19	Viability and Reliability of Dense Membranes in Removing Trace Organic Contaminants for Wastewater Reclamation and Purification: Pros and Cons, Mechanisms, and Trends. , 2015, , 805-823.		2
20	Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment. Bioresource Technology, 2014, 167, 336-342.	9.6	92
21	Effects of number of cell pairs on the performance of microbial desalination cells. Desalination, 2014, 341, 101-106.	8.2	49
22	Advanced oxidation of iodinated X-ray contrast media in reverse osmosis brines: The influence of quenching. Water Research, 2014, 62, 107-116.	11.3	31
23	Impact of ZnO embedded feed spacer on biofilm development in membrane systems. Water Research, 2013, 47, 6628-6638.	11.3	41
24	Engineered osmosis for pre-concentration of sugar-derived biofuels. RSC Advances, 2013, 3, 11467.	3.6	0
25	Antibacterial efficiency of composite nano-ZnO in biofilm development in flow-through systems. Desalination and Water Treatment, 2013, 51, 988-996.	1.0	13
26	lodinated contrast media oxidation by nonthermal plasma: The role of iodine as a tracer. Water Research, 2011, 45, 5047-5057.	11.3	26
27	Transparent exopolymer particles (TEP): A critical factor in aquatic biofilm initiation and fouling on filtration membranes. Desalination, 2011, 276, 184-190.	8.2	119
28	Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes. Desalination, 2011, 277, 250-256.	8.2	65
29	Biofouling formation and modeling in nanofiltration membranes applied to wastewater treatment. Journal of Membrane Science, 2010, 360, 165-173.	8.2	45
30	Fate of horseradish peroxidase during oxidation of monobrominated phenols. Journal of Chemical Technology and Biotechnology, 2009, 84, 1559-1566.	3.2	10
31	Characterization of catechol derivative removal by lignin peroxidase in aqueous mixture. Bioresource Technology, 2009, 100, 2247-2253.	9.6	20
32	Osmotic backwash mechanism of reverse osmosis membranes. Journal of Membrane Science, 2008, 322, 225-233.	8.2	67
33	Chlorination and coagulation as pretreatments for greywater desalination. Desalination, 2008, 222, 38-49.	8.2	54
34	Desalination of domestic wastewater effluents: phosphate removal as pretreatment. Desalination, 2008, 222, 230-242.	8.2	59
35	Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Research, 2008, 42, 1595-1605.	11.3	158
36	Gene Silencing by RNA Interference in the White Rot Fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 2008, 74, 5359-5365.	3.1	47

CARLOS G DOSORETZ

#	Article	IF	CITATIONS
37	Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Water Research, 2007, 41, 3924-3935.	11.3	186
38	Synthesis and characterization of a new cutinase substrate, 4-nitrophenyl (16-methyl sulfone ester) hexadecanoate. Journal of Biotechnology, 2006, 121, 346-350.	3.8	16
39	Visualization of active biomass distribution in a BGAC fluidized bed reactor using GFP tagged Pseudomonas putida F1. Water Research, 2006, 40, 2704-2712.	11.3	16
40	Induction of lignin peroxidase via reactive oxygen species in manganese-deficient cultures of Phanerochaete chrysosporium. Enzyme and Microbial Technology, 2006, 39, 222-228.	3.2	22
41	Boron removal from water by complexation to polyol compounds. Journal of Membrane Science, 2006, 286, 45-51.	8.2	130
42	Peroxidases. , 2006, , 399-432.		0
43	Increased biofilm activity in BGAC reactors. AICHE Journal, 2005, 51, 1042-1047.	3.6	11
44	Simultaneous removal of atrazine and nitrate using a biological granulated activated carbon(BGAC) reactor. Journal of Chemical Technology and Biotechnology, 2004, 79, 626-631.	3.2	13
45	Removal of trace organics from water using a pumped bed-membrane bioreactor with powdered activated carbon. Journal of Membrane Science, 2004, 239, 81-90.	8.2	20
46	Biocatalytic Synthesis of Polycatechols from Toxic Aromatic Compounds. Environmental Science & Technology, 2004, 38, 4753-4757.	10.0	20
47	A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-β-glucuronidase fused protein. Journal of Biotechnology, 2004, 107, 265-273.	3.8	30
48	Lignin peroxidase-catalyzed polymerization and detoxification of toxic halogenated phenols. Journal of Chemical Technology and Biotechnology, 2003, 78, 1239-1245.	3.2	14
49	Oxidation of 4-bromophenol by the recombinant fused protein cellulose-binding domain-horseradish peroxidase immobilized on cellulose. Biotechnology and Bioengineering, 2003, 82, 223-231.	3.3	33
50	Patchy Biofilm Coverage Can Explain the Potential Advantage of BGAC Reactors. Environmental Science & Technology, 2003, 37, 4274-4280.	10.0	39
51	Reactive Oxygen Species and Induction of Lignin Peroxidase in Phanerochaete chrysosporium. Applied and Environmental Microbiology, 2003, 69, 6500-6506.	3.1	68
52	Mechanistic Features of Lignin Peroxidase-catalyzed Oxidation of Substituted Phenols and 1,2-Dimethoxyarenes. Journal of Biological Chemistry, 2003, 278, 39726-39734.	3.4	23
53	The influence of non-phenolic mediators and phenolic co-substrates on the oxidation of 4-bromophenol by lignin peroxidase. Enzyme and Microbial Technology, 2002, 30, 490-498.	3.2	16
54	Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase. Enzyme and Microbial Technology, 2002, 31, 627-633.	3.2	26

CARLOS G DOSORETZ

#	Article	IF	CITATIONS
55	Manganese-containing superoxide dismutase from the white-rot fungus Phanerochaete chrysosporium: its function, expression and gene structure. Enzyme and Microbial Technology, 2002, 31, 754-764.	3.2	20
56	Potential Use of Cutinase in Enzymatic Scouring of Cotton Fiber Cuticle. Applied Biochemistry and Biotechnology, 2002, 102-103, 277-290.	2.9	87
57	Atrazine degradation under denitrifying conditions in continuous culture of Pseudomonas ADP. Water Research, 2001, 35, 3272-3275.	11.3	43
58	Inactivation of lignin peroxidase during oxidation of the highly reactive substrate ferulic acid. Enzyme and Microbial Technology, 2001, 29, 34-41.	3.2	22
59	Initial Steps of Ferulic Acid Polymerization by Lignin Peroxidase. Journal of Biological Chemistry, 2001, 276, 18734-18741.	3.4	158
60	Characterization of atrazine degradation and nitrate reduction by Pseudomonas sp. strain ADP. Journal of Environmental Management, 2000, 4, 211-218.	1.7	32
61	Manganese Deficiency Can Replace High Oxygen Levels Needed for Lignin Peroxidase Formation by <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 1999, 65, 483-488.	3.1	49
62	1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzyme and Microbial Technology, 1997, 21, 484-490.	3.2	99
63	Microbial degradation of aromatic and polyaromatic toxic compounds adsorbed on powdered activated carbon. Journal of Biotechnology, 1996, 51, 265-272.	3.8	53
64	Biosynthesis of 13-hydroperoxylinoleate, 10-oxo-8-decenoic acid and 1-octen-3-ol from linoleic acid by a mycelial-pellet homogenate of Pleurotus pulmonarius. Journal of Agricultural and Food Chemistry, 1995, 43, 2173-2178.	5.2	44
65	Extracellular proteases produced by the wood-degrading fungus Phanerochaete chrysosporium under ligninolytic and non-ligninolytic conditions. Archives of Microbiology, 1995, 163, 254-258.	2.2	54
66	Extracellular proteases produced by the wood-degrading fungus Phanerochaete chrysosporium under ligninolytic and non-ligninolytic conditions. Archives of Microbiology, 1995, 163, 254-258.	2.2	2
67	Effect of medium composition on 1-octen-3-ol formation in submerged cultures of Pleurotus pulmonarius. Applied Microbiology and Biotechnology, 1994, 40, 629-633.	3.6	33
68	Oxidative fermentation of calcium-magnesium lactate to calcium-magnesium acetate deicing salt. Biotechnology Letters, 1992, 14, 613-618.	2.2	2
69	Mushroom mycelium as a potential source of food flavour. Trends in Food Science and Technology, 1991, 2, 214-218.	15.1	42
70	Ligninase production by immobilized cultures of Phanerochaete chrysosporium grown under nitrogen-sufficient conditions. Enzyme and Microbial Technology, 1991, 13, 404-407.	3.2	19
71	Physiological aspects of the regulation of extracellular enzymes ofphanerochaete chrysosporiwn. Applied Biochemistry and Biotechnology, 1991, 28-29, 253-265.	2.9	28
72	Effect of Environmental Conditions on Extracellular Protease Activity in Lignolytic Cultures of <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 1990, 56, 395-400.	3.1	130

IF

CITATIONS

TICLE
TICLE

Lignin and Lignin-Modifying Enzymes. , 0, , 611-620.