Marianthi G Ierapetritou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3237695/publications.pdf

Version: 2024-02-01

250 papers

9,538 citations

54 h-index 80 g-index

261 all docs

261 docs citations

times ranked

261

5154 citing authors

#	Article	IF	CITATIONS
1	Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Computers and Chemical Engineering, 2018, 108, 250-267.	2.0	437
2	Process scheduling under uncertainty: Review and challenges. Computers and Chemical Engineering, 2008, 32, 715-727.	2.0	295
3	A review of the Residence Time Distribution (RTD) applications in solid unit operations. Powder Technology, 2012, 228, 416-423.	2.1	175
4	Characterizing continuous powder mixing using residence time distribution. Chemical Engineering Science, 2011, 66, 417-425.	1.9	166
5	Refinery Short-Term Scheduling Using Continuous Time Formulation:Â Crude-Oil Operations. Industrial & Lamp; Engineering Chemistry Research, 2003, 42, 3085-3097.	1.8	154
6	An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process. Computers and Chemical Engineering, 2012, 42, 30-47.	2.0	150
7	Global Optimization in Design under Uncertainty:Â Feasibility Test and Flexibility Index Problems. Industrial & Engineering Chemistry Research, 2001, 40, 4267-4282.	1.8	136
8	Efficient short-term scheduling of refinery operations based on a continuous time formulation. Computers and Chemical Engineering, 2004, 28, 1001-1019.	2.0	127
9	Perspectives on the continuous manufacturing of powderâ€based pharmaceutical processes. AICHE Journal, 2016, 62, 1846-1862.	1.8	127
10	Characterization of continuous convective powder mixing processes. Powder Technology, 2008, 182, 368-378.	2.1	115
11	Integration of Scheduling and Control with Closed Loop Implementation. Industrial & Engineering Chemistry Research, 2012, 51, 8550-8565.	1.8	111
12	Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing: A Literature Review. Processes, 2020, 8, 1088.	1.3	108
13	Petroleum Refining Operations: Key Issues, Advances, and Opportunities. Industrial & Engineering Chemistry Research, 2011, 50, 1161-1170.	1.8	105
14	An engineering study on the enhanced control and operation of continuous manufacturing of pharmaceutical tablets via roller compaction. International Journal of Pharmaceutics, 2012, 438, 307-326.	2.6	105
15	Batch Plant Design and Operations under Uncertainty. Industrial & Engineering Chemistry Research, 1996, 35, 772-787.	1.8	102
16	A New Approach for Efficient Rescheduling of Multiproduct Batch Plants. Industrial & Engineering Chemistry Research, 2000, 39, 4228-4238.	1.8	101
17	Optimal design of sustainable chemical processes and supply chains: A review. Computers and Chemical Engineering, 2012, 44, 94-103.	2.0	99
18	Mixed-Integer Linear Programming Model for Gasoline Blending and Distribution Scheduling. Industrial & Distribution Scheduling.	1.8	98

#	Article	IF	CITATIONS
19	Robust Optimization for Process Scheduling Under Uncertainty. Industrial & Engineering Chemistry Research, 2008, 47, 4148-4157.	1.8	93
20	System-wide hybrid MPC–PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1164-1182.	2.0	89
21	Accelerating Benders method using covering cut bundle generation. International Transactions in Operational Research, 2010, 17, 221-237.	1.8	87
22	A systematic framework for onsite design and implementation of a control system in a continuous tablet manufacturing process. Computers and Chemical Engineering, 2014, 66, 186-200.	2.0	85
23	Implementation of an advanced hybrid MPC–PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant. International Journal of Pharmaceutics, 2014, 473, 38-54.	2.6	80
24	Robust Short-Term Scheduling of Multiproduct Batch Plants under Demand Uncertainty. Industrial & Engineering Chemistry Research, 2001, 40, 4543-4554.	1.8	79
25	Investigation of the effect of impeller rotation rate, powder flow rate, and cohesion on powder flow behavior in a continuous blender using PEPT. Chemical Engineering Science, 2010, 65, 5658-5668.	1.9	79
26	Surrogate-Based Optimization of Expensive Flowsheet Modeling for Continuous Pharmaceutical Manufacturing. Journal of Pharmaceutical Innovation, 2013, 8, 131-145.	1.1	77
27	Process analysis and optimization of continuous pharmaceutical manufacturing using flowsheet models. Computers and Chemical Engineering, 2017, 107, 77-91.	2.0	77
28	From process control to supply chain management: An overview of integrated decision making strategies. Computers and Chemical Engineering, 2017, 106, 826-835.	2.0	75
29	Feasibility analysis of black-box processes using an adaptive sampling Kriging-based method. Computers and Chemical Engineering, 2012, 36, 358-368.	2.0	74
30	A kriging method for the solution of nonlinear programs with black-box functions. AICHE Journal, 2007, 53, 2001-2012.	1.8	72
31	Modeling of Particulate Processes for the Continuous Manufacture of Solid-Based Pharmaceutical Dosage Forms. Processes, 2013, 1, 67-127.	1.3	72
32	Novel Optimization Approach of Stochastic Planning Models. Industrial & Engineering Chemistry Research, 1994, 33, 1930-1942.	1.8	70
33	Design Space of Pharmaceutical Processes Using Data-Driven-Based Methods. Journal of Pharmaceutical Innovation, 2010, 5, 119-137.	1.1	70
34	Hybrid simulation based optimization approach for supply chain management. Computers and Chemical Engineering, 2012, 47, 183-193.	2.0	70
35	Integrated production planning and scheduling optimization of multisite, multiproduct process industry. Computers and Chemical Engineering, 2012, 37, 214-226.	2.0	70
36	Integration of scheduling and control under uncertainties: Review and challenges. Chemical Engineering Research and Design, 2016, 116, 98-113.	2.7	70

#	Article	IF	CITATIONS
37	Rolling horizon based planning and scheduling integration with production capacity consideration. Chemical Engineering Science, 2010, 65, 5887-5900.	1.9	69
38	Aromatics from Lignocellulosic Biomass: Economic Analysis of the Production of pâ€Xylene from 5â€Hydroxymethylfurfural. AICHE Journal, 2013, 59, 2079-2087.	1.8	69
39	Effects of rotation rate, mixing angle, and cohesion in two continuous powder mixers—A statistical approach. Powder Technology, 2009, 194, 217-227.	2.1	68
40	A simulation-based optimization framework for integrating scheduling and model predictive control, and its application to air separation units. Computers and Chemical Engineering, 2018, 113, 139-151.	2.0	67
41	Integration of scheduling and control for batch processes using multiâ€parametric model predictive control. AICHE Journal, 2014, 60, 3169-3183.	1.8	65
42	Computational Approaches for Studying the Granular Dynamics of Continuous Blending Processes, 1 $\hat{a} \in \text{Model}$ DEM Based Methods. Macromolecular Materials and Engineering, 2011, 296, 290-307.	1.7	64
43	Real time monitoring of powder blend bulk density for coupled feed-forward/feed-back control of a continuous direct compaction tablet manufacturing process. International Journal of Pharmaceutics, 2015, 495, 612-625.	2.6	64
44	Integrated production planning and scheduling using a decomposition framework. Chemical Engineering Science, 2009, 64, 3585-3597.	1.9	62
45	Production planning and scheduling integration through augmented Lagrangian optimization. Computers and Chemical Engineering, 2010, 34, 996-1006.	2.0	62
46	Alternative Approaches for $\langle i \rangle p \langle i \rangle$ -Xylene Production from Starch: Techno-Economic Analysis. Industrial & Engineering Chemistry Research, 2014, 53, 10688-10699.	1.8	62
47	A novel feasibility analysis method for blackâ€box processes using a radial basis function adaptive sampling approach. AICHE Journal, 2017, 63, 532-550.	1.8	62
48	Comparison between Batch and Continuous Monoclonal Antibody Production and Economic Analysis. Industrial & Engineering Chemistry Research, 2019, 58, 5851-5863.	1.8	62
49	Improving benders decomposition using maximum feasible subsystem (MFS) cut generation strategy. Computers and Chemical Engineering, 2010, 34, 1237-1245.	2.0	61
50	Decomposition approaches for the efficient solution of short-term scheduling problems. Computers and Chemical Engineering, 2003, 27, 1261-1276.	2.0	60
51	Hierarchical approach for production planning and scheduling under uncertainty. Chemical Engineering and Processing: Process Intensification, 2007, 46, 1129-1140.	1.8	59
52	A kriging based method for the solution of mixed-integer nonlinear programs containing black-box functions. Journal of Global Optimization, 2009, 43, 191-205.	1.1	59
53	Computer-Aided Flowsheet Simulation of a Pharmaceutical Tablet Manufacturing Process Incorporating Wet Granulation. Journal of Pharmaceutical Innovation, 2013, 8, 11-27.	1.1	59
54	Reactive scheduling using parametric programming. AICHE Journal, 2008, 54, 2610-2623.	1.8	56

#	Article	IF	Citations
55	Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation. Powder Technology, 2019, 342, 744-763.	2.1	56
56	Determination of operability limits using simplicial approximation. AICHE Journal, 2002, 48, 2902-2909.	1.8	55
57	Challenges and opportunities in modeling pharmaceutical manufacturing processes. Computers and Chemical Engineering, 2015, 81, 32-39.	2.0	55
58	Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid. Computers and Chemical Engineering, 2013, 52, 26-34.	2.0	54
59	Closed-Loop Feedback Control of a Continuous Pharmaceutical Tablet Manufacturing Process via Wet Granulation. Journal of Pharmaceutical Innovation, 2014, 9, 16-37.	1.1	54
60	Generate Pareto optimal solutions of scheduling problems using normal boundary intersection technique. Computers and Chemical Engineering, 2007, 31, 268-280.	2.0	53
61	Near infrared spectroscopic calibration models for real time monitoring of powder density. International Journal of Pharmaceutics, 2016, 512, 61-74.	2.6	53
62	Design Optimization under Parameter Uncertainty for General Black-Box Models. Industrial & Engineering Chemistry Research, 2002, 41, 6687-6697.	1.8	51
63	On-the-fly reduction of kinetic mechanisms using element flux analysis. Chemical Engineering Science, 2010, 65, 1173-1184.	1.9	51
64	Dynamic Data-Driven Modeling of Pharmaceutical Processes. Industrial & Engineering Chemistry Research, 2011, 50, 6743-6754.	1.8	51
65	Derivativeâ€free optimization for expensive constrained problems using a novel expected improvement objective function. AICHE Journal, 2014, 60, 2462-2474.	1.8	51
66	Economic Analysis of Batch and Continuous Biopharmaceutical Antibody Production: a Review. Journal of Pharmaceutical Innovation, 2020, 15 , $182\text{-}200$.	1.1	51
67	New approach for quantifying process feasibility: Convex and 1-D quasi-convex regions. AICHE Journal, 2001, 47, 1407-1417.	1.8	49
68	Process scheduling under uncertainty using multiparametric programming. AICHE Journal, 2007, 53, 3183-3203.	1.8	49
69	A New Methodology for the General Multiparametric Mixed-Integer Linear Programming (MILP) Problems. Industrial & Engineering Chemistry Research, 2007, 46, 5141-5151.	1.8	48
70	Feasibility and flexibility analysis of black-box processes Part 1: Surrogate-based feasibility analysis. Chemical Engineering Science, 2015, 137, 986-1004.	1.9	48
71	Using a material property library to find surrogate materials for pharmaceutical process development. Powder Technology, 2018, 339, 659-676.	2.1	47
72	Reduced-order discrete element method modeling. Chemical Engineering Science, 2013, 95, 12-26.	1.9	46

#	Article	IF	CITATIONS
73	Branchedâ€chain amino acid supplementation: impact on signaling and relevance to critical illness. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 449-460.	6.6	46
74	A review of existing mixing indices in solid-based continuous blending operations. Powder Technology, 2020, 373, 195-209.	2.1	46
75	Effects of glucose and insulin on HepG2 3A cell metabolism. Biotechnology and Bioengineering, 2010, 107, 347-356.	1.7	45
76	Flowsheet optimization of an integrated continuous purification-processing pharmaceutical manufacturing operation. Chemical Engineering Science, 2013, 102, 56-66.	1.9	45
77	Optimizing continuous powder mixing processes using periodic section modeling. Chemical Engineering Science, 2012, 80, 70-80.	1.9	44
78	Renewable lubricants with tailored molecular architecture. Science Advances, 2019, 5, eaav5487.	4.7	44
79	Parametric process synthesis for general nonlinear models. Computers and Chemical Engineering, 2003, 27, 1499-1512.	2.0	43
80	Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method. Water Resources Research, 2003, 39, .	1.7	43
81	Short-Term Scheduling under Uncertainty Using MILP Sensitivity Analysis. Industrial & Engineering Chemistry Research, 2004, 43, 3782-3791.	1.8	43
82	A Robust Event-Based Continuous Time Formulation for Tank Transfer Scheduling. Industrial & Samp; Engineering Chemistry Research, 2007, 46, 9126-9136.	1.8	43
83	Model-Based Control-Loop Performance of a Continuous Direct Compaction Process. Journal of Pharmaceutical Innovation, 2011, 6, 249-263.	1.1	43
84	Dynamic Flowsheet Model Development and Sensitivity Analysis of a Continuous Pharmaceutical Tablet Manufacturing Process Using the Wet Granulation Route. Processes, 2019, 7, 234.	1.3	43
85	The Future is Garbage: Repurposing of Food Waste to an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 8124-8136.	3.2	42
86	Use of genomic data in risk assessment case study: II. Evaluation of the dibutyl phthalate toxicogenomic data set. Toxicology and Applied Pharmacology, 2013, 271, 349-362.	1.3	41
87	Life Cycle Assessment of Biobased <i>p</i> -Xylene Production. Industrial & Engineering Chemistry Research, 2015, 54, 2366-2378.	1.8	41
88	An Integrated Approach to Simulation of Pharmaceutical Processes for Solid Drug Manufacture. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 5128-5147.	1.8	40
89	An integrated framework for scheduling and control using fast model predictive control. AICHE Journal, 2015, 61, 3304-3319.	1.8	40
90	Process synthesis optimization and flexibility evaluation of air separation cycles. AICHE Journal, 2005, 51, 1190-1200.	1.8	39

#	Article	IF	Citations
91	Hybrid DEM-compartment modeling approach for granular mixing. AICHE Journal, 2007, 53, 119-128.	1.8	39
92	Computational Approaches for Studying the Granular Dynamics of Continuous Blending Processes, 2 – Population Balance and Dataâ€Based Methods. Macromolecular Materials and Engineering, 2012, 297, 9-19.	1.7	39
93	A Combined Feed-Forward/Feed-Back Control System for a QbD-Based Continuous Tablet Manufacturing Process. Processes, 2015, 3, 339-356.	1.3	39
94	Feasibility and flexibility analysis of black-box processes part 2: Surrogate-based flexibility analysis. Chemical Engineering Science, 2015, 137, 1005-1013.	1,9	39
95	A framework of hybrid model development with identification of plantâ€model mismatch. AICHE Journal, 2020, 66, e16996.	1.8	39
96	Feasibility Evaluation of Nonconvex Systems Using Shape Reconstruction Techniques. Industrial & Engineering Chemistry Research, 2005, 44, 3638-3647.	1.8	38
97	Similarities and differences between the concepts of operability and flexibility: The steadyâ€state case. AICHE Journal, 2010, 56, 702-716.	1.8	37
98	Comparison of the cytokine and chemokine dynamics of the early inflammatory response in models of burn injury and infection. Cytokine, 2011, 55, 362-371.	1.4	37
99	A graph-based approach to developing adaptive representations of complex reaction mechanisms. Combustion and Flame, 2008, 155, 585-604.	2.8	36
100	Centralized–decentralized optimization for refinery scheduling. Computers and Chemical Engineering, 2009, 33, 2091-2105.	2.0	36
101	Supply chain management using an optimization driven simulation approach. AICHE Journal, 2013, 59, 4612-4626.	1.8	36
102	Predictive Modeling for Pharmaceutical Processes Using Kriging and Response Surface. Journal of Pharmaceutical Innovation, 2009, 4, 174-186.	1.1	34
103	Discrete Element Modeling (DEM) for mixing of cohesive solids in rotating cylinders. Powder Technology, 2018, 335, 124-136.	2.1	34
104	Framework for evaluating the feasibility/operability of nonconvex processes. AICHE Journal, 2003, 49, 1233-1240.	1.8	32
105	Periodic section modeling of convective continuous powder mixing processes. AICHE Journal, 2012, 58, 69-78.	1.8	32
106	Production planning optimization of an ethylene plant considering process operation and energy utilization. Computers and Chemical Engineering, 2016, 87, 1-12.	2.0	32
107	Process Intensification for Cellulosic Biorefineries. ChemSusChem, 2017, 10, 2566-2572.	3.6	32
108	Measurement of residence time distribution in a rotary calciner. AICHE Journal, 2013, 59, 4068-4076.	1.8	31

#	Article	IF	Citations
109	Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: Application of models. Powder Technology, 2019, 344, 525-544.	2.1	31
110	Using Compartment Modeling to Investigate Mixing Behavior of a Continuous Mixer. Journal of Pharmaceutical Innovation, 2008, 3, 161-174.	1.1	30
111	Quality by Design Methodology for Development and Scale-up of Batch Mixing Processes. Journal of Pharmaceutical Innovation, 2008, 3, 258-270.	1.1	30
112	Characterization of feeder effects on continuous solid mixing using fourier series analysis. AICHE Journal, 2011, 57, 1144-1153.	1.8	30
113	Shortâ€term scheduling of a largeâ€scale oilâ€refinery operations: Incorporating logistics details. AICHE Journal, 2011, 57, 1570-1584.	1.8	30
114	Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. Science Advances, 2022, 8, eabj7523.	4.7	30
115	Discrete element reducedâ€order modeling of dynamic particulate systems. AICHE Journal, 2014, 60, 3184-3194.	1.8	29
116	Techno-economic and life cycle analysis of different types of hydrolysis process for the production of p-Xylene. Computers and Chemical Engineering, 2019, 121, 685-695.	2.0	29
117	Characterizing powder mixing processes utilizing compartment models. International Journal of Pharmaceutics, 2006, 320, 14-22.	2.6	28
118	Predictive modeling of pharmaceutical processes with missing and noisy data. AICHE Journal, 2010, 56, 2860-2872.	1.8	28
119	Integrated model of refining and petrochemical plant for enterprise-wide optimization. Computers and Chemical Engineering, 2017, 97, 194-207.	2.0	28
120	A multiscale DEM-PBM approach for a continuous comilling process using a mechanistically developed breakage kernel. Chemical Engineering Science, 2018, 178, 211-221.	1.9	28
121	One-step lignocellulose depolymerization and saccharification to high sugar yield and less condensed isolated lignin. Green Chemistry, 2021, 23, 1200-1211.	4.6	28
122	Speed-up Benders decomposition using maximum density cut (MDC) generation. Annals of Operations Research, 2013, 210, 101-123.	2.6	27
123	Determination of the Confidence Interval of the Relative Standard Deviation Using Convolution. Journal of Pharmaceutical Innovation, 2013, 8, 72-82.	1.1	27
124	Modeling the effects of material properties on tablet compaction: A building block for controlling both batch and continuous pharmaceutical manufacturing processes. International Journal of Pharmaceutics, 2018, 543, 274-287.	2.6	27
125	Development of an adaptive chemistry model considering micromixing effects. Chemical Engineering Science, 2003, 58, 4537-4555.	1.9	26
126	Biomassâ€based chemical production using technoâ€economic and life cycle analysis. AICHE Journal, 2019, 65, e16660.	1.8	26

#	Article	IF	CITATIONS
127	Integration of planning, scheduling and control problems using data-driven feasibility analysis and surrogate models. Computers and Chemical Engineering, 2020, 134, 106714.	2.0	26
128	A framework for supply chain optimization for modular manufacturing with production feasibility analysis. Computers and Chemical Engineering, 2021, 145, 107175.	2.0	26
129	Uncertainty analysis on the righthand side for MILP problems. AICHE Journal, 2006, 52, 2486-2495.	1.8	25
130	Optimal operation and control of intensified processes â€" challenges and opportunities. Current Opinion in Chemical Engineering, 2019, 25, 82-86.	3.8	25
131	Recent advances in integrated process analytical techniques, modeling, and control strategies to enable continuous biomanufacturing of monoclonal antibodies. Journal of Chemical Technology and Biotechnology, 2022, 97, 2317-2335.	1.6	25
132	Design of flexible reduced kinetic mechanisms. AICHE Journal, 2001, 47, 2461-2473.	1.8	24
133	A rational design approach for amino acid supplementation in hepatocyte culture. Biotechnology and Bioengineering, 2009, 103, 1176-1191.	1.7	24
134	Model development and prediction of particle size distribution, density and friability of a comilling operation in a continuous pharmaceutical manufacturing process. International Journal of Pharmaceutics, 2018, 549, 271-282.	2.6	24
135	Design space maintenance by online model adaptation in pharmaceutical manufacturing. Computers and Chemical Engineering, 2019, 127, 254-271.	2.0	24
136	Discrete element modeling for continuous powder feeding operation: Calibration and system analysis. International Journal of Pharmaceutics, 2020, 585, 119427.	2.6	24
137	Integrated Moving Horizon-Based Dynamic Real-Time Optimization and Hybrid MPC-PID Control of a Direct Compaction Continuous Tablet Manufacturing Process. Journal of Pharmaceutical Innovation, 2015, 10, 233-253.	1.1	22
138	Constrained optimization of black-box stochastic systems using a novel feasibility enhanced Kriging-based method. Computers and Chemical Engineering, 2018, 118, 210-223.	2.0	22
139	A comparative assessment of efficient uncertainty analysis techniques for environmental fate and transport models: application to the FACT model. Journal of Hydrology, 2005, 307, 204-218.	2.3	21
140	A Kriging-Based Approach to MINLP Containing Black-Box Models and Noise. Industrial & Engineering Chemistry Research, 2008, 47, 6101-6125.	1.8	21
141	Scheduling of Loading and Unloading of Crude Oil in a Refinery with Optimal Mixture Preparation. Industrial & Discrete Preparation Chemistry Research, 2009, 48, 2624-2633.	1.8	21
142	A novel and systematic approach to identify the design space of pharmaceutical processes. Computers and Chemical Engineering, 2018, 115, 309-322.	2.0	21
143	Data-driven feasibility analysis for the integration of planning and scheduling problems. Optimization and Engineering, 2019, 20, 1029-1066.	1.3	21
144	Modular Design Optimization using Machine Learning-based Flexibility Analysis. Journal of Process Control, 2020, 90, 18-34.	1.7	21

#	Article	IF	CITATIONS
145	Equation-free, coarse-grained computational optimization using timesteppers. Chemical Engineering Science, 2006, 61, 779-793.	1.9	20
146	Pathway analysis of liver metabolism under stressed condition. Journal of Theoretical Biology, 2011, 272, 131-140.	0.8	20
147	Improvement of Tablet Coating Uniformity Using a Quality by Design Approach. AAPS PharmSciTech, 2012, 13, 231-246.	1.5	20
148	Scale-up strategy for continuous powder blending process. Powder Technology, 2013, 235, 55-69.	2.1	20
149	A novel framework of surrogate-based feasibility analysis for establishing design space of twin-column continuous chromatography. International Journal of Pharmaceutics, 2021, 609, 121161.	2.6	20
150	Adaptive multiscale solution of dynamical systems in chemical processes using wavelets. Computers and Chemical Engineering, 2003, 27, 131-142.	2.0	19
151	Model Independent Parametric Decision Making. Annals of Operations Research, 2004, 132, 135-155.	2.6	19
152	Stochastic MINLP optimization using simplicial approximation. Computers and Chemical Engineering, 2007, 31, 1081-1087.	2.0	19
153	Flexibility assessment and risk management in supply chains. AICHE Journal, 2015, 61, 4166-4178.	1.8	19
154	A Systematic Framework for Data Management and Integration in a Continuous Pharmaceutical Manufacturing Processing Line. Processes, 2018, 6, 53.	1.3	19
155	On the global and efficient solution of stochastic batch plant design problems. Computers and Chemical Engineering, 1997, 21, 1411-1431.	2.0	18
156	The dynamics of the early inflammatory response in double-hit burn and sepsis animal models. Cytokine, 2011, 56, 494-502.	1.4	18
157	Comparison of Biodiesel Performance Based on HCCI Engine Simulation Using Detailed Mechanism with On-the-fly Reduction. Energy & Samp; Fuels, 2012, 26, 976-983.	2.5	18
158	Capacity expansion planning through augmented Lagrangian optimization and scenario decomposition. AICHE Journal, 2012, 58, 871-883.	1.8	18
159	A Decomposition Approach for the Solution of Scheduling Including Process Dynamics of Continuous Processes. Industrial & Engineering Chemistry Research, 2016, 55, 1266-1280.	1.8	18
160	Advanced Model Predictive Feedforward/Feedback Control of a Tablet Press. Journal of Pharmaceutical Innovation, 2017, 12, 110-123.	1.1	18
161	Process flowsheet optimization of chemicals production from biomass derived glucose solutions. Computers and Chemical Engineering, 2017, 102, 258-267.	2.0	18
162	Transcriptional and metabolic flux profiling of triadimefon effects on cultured hepatocytes. Toxicology and Applied Pharmacology, 2010, 248, 165-177.	1.3	17

#	Article	IF	CITATIONS
163	Multi-element Flux Analysis for the Incorporation of Detailed Kinetic Mechanisms in Reactive Simulations. Energy & Energ	2.5	17
164	Computer Aided Design and Analysis of Continuous Pharmaceutical Manufacturing Processes. Computer Aided Chemical Engineering, 2011, 29, 216-220.	0.3	17
165	A method for solving the general parametric linear complementarity problem. Annals of Operations Research, 2010, 181, 485-501.	2.6	16
166	Metabolic flux determination in perfused livers by mass balance analysis: Effect of fasting. Biotechnology and Bioengineering, 2010, 107, 825-835.	1.7	16
167	A hybrid kinetic mechanism reduction scheme based on the on-the-fly reduction and quasi-steady-state approximation. Chemical Engineering Science, 2013, 93, 150-162.	1.9	16
168	Review of the important challenges and opportunities related to modeling of mammalian cell bioreactors. AICHE Journal, 2017, 63, 398-408.	1.8	16
169	Investigation on the effect of blade patterns on continuous solid mixing performance. Canadian Journal of Chemical Engineering, 2011, 89, 969-984.	0.9	15
170	Metabolic response of perfused livers to various oxygenation conditions. Biotechnology and Bioengineering, 2011, 108, 2947-2957.	1.7	15
171	Dynamics of Short-Term Gene Expression Profiling in Liver Following Thermal Injury. Journal of Surgical Research, 2012, 176, 549-558.	0.8	15
172	Hybrid Simulation Based Optimization Framework for Centralized and Decentralized Supply Chains. Industrial & Decentralized Supply Chains.	1.8	15
173	A novel adaptive sampling based methodology for feasible region identification of compute intensive models using artificial neural network. AICHE Journal, 2021, 67, e17095.	1.8	15
174	Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution. Green Chemistry, 2021, 23, 4008-4023.	4.6	15
175	Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP). Toxicology and Applied Pharmacology, 2013, 271, 386-394.	1.3	14
176	Phthalic anhydride production from hemicellulose solutions: Technoeconomic analysis and life cycle assessment. AICHE Journal, 2015, 61, 3708-3718.	1.8	14
177	Effect of material properties on the residence time distribution (RTD) of a tablet press feed frame. International Journal of Pharmaceutics, 2020, 591, 119961.	2.6	14
178	Comparison between Different Hybrid Life Cycle Assessment Methodologies: A Review and Case Study of Biomass-based <i>p</i> -Xylene Production. Industrial & Engineering Chemistry Research, 2020, 59, 22313-22329.	1.8	14
179	Dynamics of Hepatic Gene Expression Profile in a Rat Cecal Ligation and Puncture Model. Journal of Surgical Research, 2012, 176, 583-600.	0.8	13
180	A centroidâ€based sampling strategy for kriging global modeling and optimization. AICHE Journal, 2010, 56, 220-240.	1.8	12

#	Article	IF	CITATIONS
181	Long-term dynamic profiling of inflammatory mediators in double-hit burn and sepsis animal models. Cytokine, 2012, 58, 307-315.	1.4	12
182	A Novel Surrogate-Based Optimization Method for Black-Box Simulation with Heteroscedastic Noise. Industrial & Engineering Chemistry Research, 2017, 56, 10720-10732.	1.8	12
183	mAb Production Modeling and Design Space Evaluation Including Glycosylation Process. Processes, 2021, 9, 324.	1.3	12
184	Effects of amino acid transport limitations on cultured hepatocytes. Biophysical Chemistry, 2010, 152, 89-98.	1. 5	11
185	Effect of Fasting on the Metabolic Response of Liver to Experimental Burn Injury. PLoS ONE, 2013, 8, e54825.	1.1	11
186	Multienterprise supply chain: Simulation and optimization. AICHE Journal, 2016, 62, 3392-3403.	1.8	11
187	Residence time distribution modelling and in line monitoring of drug concentration in a tablet press feed frame containing dead zones. International Journal of Pharmaceutics, 2021, 592, 120048.	2.6	11
188	Using residence time distribution in pharmaceutical solid dose manufacturing – A critical review. International Journal of Pharmaceutics, 2021, 610, 121248.	2.6	11
189	Computational studies using a novel simplicial-approximation based algorithm for MINLP optimization. Computers and Chemical Engineering, 2004, 28, 1771-1780.	2.0	10
190	A mixed-integer optimization framework for the synthesis and analysis of regulatory networks. Journal of Global Optimization, 2009, 43, 263-276.	1.1	10
191	Lagrangian decomposition approach to scheduling large-scale refinery operations. Computers and Chemical Engineering, 2015, 79, 1-29.	2.0	10
192	Combined Feedforward/Feedback Control of an Integrated Continuous Granulation Process. Journal of Pharmaceutical Innovation, 2019, 14, 259-285.	1.1	10
193	A Computationally Efficient Surrogate-Based Reduction of a Multiscale Comill Process Model. Journal of Pharmaceutical Innovation, 2020, 15, 424-444.	1.1	10
194	Modular supply chain optimization considering demand uncertainty to manage risk. AICHE Journal, 2021, 67, e17367.	1.8	10
195	Deterministic Framework for Robust Modular Design with Integrated-Demand Data Analysis. Industrial & Design & Chemistry Research, 2004, 43, 6813-6821.	1.8	9
196	Multiobjective Framework for Modular Design Generation Incorporating Demand Uncertainty. Industrial & Design Chemistry Research, 2005, 44, 3594-3606.	1.8	9
197	Numerical Investigation of Homogeneous Charge Compression Ignition (HCCI) Combustion with Detailed Chemical Kinetics Using On-the-Fly Reduction. Energy & Samp; Fuels, 2011, 25, 3369-3376.	2.5	9
198	Analysis of Amino Acid Supplementation Effects on Hepatocyte Cultures Using Flux Balance Analysis. OMICS A Journal of Integrative Biology, 2011, 15, 449-460.	1.0	9

#	Article	IF	CITATIONS
199	Integrated modeling to capture the interaction of physiology and fluid dynamics in biopharmaceutical bioreactors. Computers and Chemical Engineering, 2017, 97, 271-282.	2.0	9
200	A parallel unidirectional coupled DEM-PBM model for the efficient simulation of computationally intensive particulate process systems. Computers and Chemical Engineering, 2018, 119, 128-142.	2.0	9
201	Multiobjective Modular Biorefinery Configuration under Uncertainty. Industrial & Engineering Chemistry Research, 2021, 60, 12956-12969.	1.8	9
202	Accelerating manufacturing for biomass conversion <i>via</i> integrated process and bench digitalization: a perspective. Reaction Chemistry and Engineering, 2022, 7, 813-832.	1.9	9
203	Integration of Data Analysis and Design Optimization for the Systematic Generation of Equipment Portfolio. Industrial & Engineering Chemistry Research, 2003, 42, 5204-5214.	1.8	8
204	Lagrangean decomposition using an improved Nelder–Mead approach for Lagrangean multiplier update. Computers and Chemical Engineering, 2006, 30, 778-789.	2.0	8
205	Stoichiometry Based Steady-State Hepatic Flux Analysis: Computational and Experimental Aspects. Metabolites, 2012, 2, 268-291.	1.3	8
206	Improving Continuous Powder Blending Performance Using Projection to Latent Structures Regression. Journal of Pharmaceutical Innovation, 2013, 8, 99-110.	1.1	8
207	Efficient Decomposition Approach for Large-Scale Refinery Scheduling. Industrial & Engineering Chemistry Research, 2015, 54, 9964-9991.	1.8	8
208	Surrogate-based feasibility analysis for black-box stochastic simulations with heteroscedastic noise. Journal of Global Optimization, 2018, 71, 957-985.	1.1	8
209	Integration of onâ€theâ€fly kinetic reduction with multidimensional CFD. AICHE Journal, 2010, 56, 1305-1314.	1.8	7
210	Long-term gene expression profile dynamics following cecal ligation and puncture in the rat. Journal of Surgical Research, 2012, 178, 431-442.	0.8	7
211	Surrogate-based Optimization for Pharmaceutical Manufacturing Processes. Computer Aided Chemical Engineering, 2017, , 2797-2802.	0.3	7
212	A Framework for the Development of Integrated and Computationally Feasible Models of Large-Scale Mammalian Cell Bioreactors. Processes, 2018, 6, 82.	1.3	7
213	Hybrid multi-zonal compartment modeling for continuous powder blending processes. International Journal of Pharmaceutics, 2021, 602, 120643.	2.6	7
214	Impact of burn priming on immune and metabolic functions of whole Liver in a rat cecal ligation and puncture model. International Journal of Burns and Trauma, 2013, 3, 55-65.	0.2	7
215	Integrating tactical planning, operational planning and scheduling using data-driven feasibility analysis. Computers and Chemical Engineering, 2022, 161, 107759.	2.0	7
216	Adaptive optimisation of noisy black-box functions inherent in microscopic models. Computers and Chemical Engineering, 2007, 31, 466-476.	2.0	6

#	Article	IF	Citations
217	Exploring flux representations of complex kinetics networks. AICHE Journal, 2012, 58, 553-567.	1.8	6
218	Reactive Flow Simulation Based on the Integration of Automated Mechanism Generation and On-the-Fly Reduction. Energy & E	2.5	6
219	Synchronous and asynchronous decision making strategies in supply chains. Computers and Chemical Engineering, 2014, 71, 116-129.	2.0	6
220	Improving Feedability of Highly Adhesive Active Pharmaceutical Ingredients by Silication. Journal of Pharmaceutical Innovation, 2021, 16, 279-292.	1.1	6
221	Comparison of 4,4′-Dimethylbiphenyl from Biomass-Derived Furfural and Oil-Based Resource: Technoeconomic Analysis and Life-Cycle Assessment. Industrial & Engineering Chemistry Research, 2022, 61, 8963-8972.	1.8	6
222	Short-term scheduling of chemical process including uncertainty. Control Engineering Practice, 2007, 15, 1207-1221.	3.2	5
223	Integration of Planning and Scheduling and Consideration of Uncertainty in Process Operations. Computer Aided Chemical Engineering, 2009, 27, 87-94.	0.3	5
224	Incorporation of Detailed Chemical Mechanisms in Reactive Flow Simulations Using Element-Flux Analysis. Industrial & Engineering Chemistry Research, 2010, 49, 10471-10478.	1.8	5
225	Plant-Wide Control of a Continuous Tablet Manufacturing for Quality-By-Design Based Pharmaceutical Manufacturing. Computer Aided Chemical Engineering, 2015, 37, 2183-2188.	0.3	5
226	A discontinuous derivative-free optimization framework for multi-enterprise supply chain. Optimization Letters, 2020, 14, 959-988.	0.9	5
227	Efficient Data-based Methodology for Model enhancement and Flowsheet analyses for Continuous Pharmaceutical Manufacturing. Computer Aided Chemical Engineering, 2020, 48, 127-132.	0.3	5
228	Discrete Element Modeling (DEM) Parametric Study of Feeder Unit in Continuous Pharmaceutical Industry. Computer Aided Chemical Engineering, 2019, , 341-346.	0.3	5
229	Modeling and Optimization of Continuous Pharmaceutical Manufacturing Processes. Computer Aided Chemical Engineering, 2015, 37, 85-92.	0.3	4
230	110th Anniversary: Integration of Scheduling and Robust Model Predictive Control. Industrial & Engineering Chemistry Research, 2020, 59, 265-280.	1.8	4
231	Process Design and Comparison for Batch and Continuous Manufacturing of Recombinant Adeno-Associated Virus. Journal of Pharmaceutical Innovation, 2023, 18, 275-286.	1.1	4
232	Feasibility analysis of black-box processes using an adaptive sampling kriging based method. Computer Aided Chemical Engineering, 2011, 29, 432-436.	0.3	3
233	Hybrid advanced control of flexible multipurpose continuous tablet manufacturing process via direct compaction. Computer Aided Chemical Engineering, 2013, 32, 757-762.	0.3	3
234	Modeling and designing powder mixing processes utilizing compartment modeling. Computer Aided Chemical Engineering, 2006, 21, 1039-1044.	0.3	2

#	Article	IF	Citations
235	Sensitivity-Based Product Portfolio and Design Integration. Industrial & Engineering Chemistry Research, 2011, 50, 3919-3927.	1.8	2
236	Multi-zonal compartmentalization methodology for surrogate modelling in continuous pharmaceutical manufacturing. Computer Aided Chemical Engineering, 2021, 50, 725-731.	0.3	2
237	Burn trauma disrupts circadian rhythms in rat liver. International Journal of Burns and Trauma, 2016, 6, 12-25.	0.2	2
238	Integrated production planning and scheduling optimization of multi-site, multi-product process industry. Computer Aided Chemical Engineering, 2011, 29, 1015-1019.	0.3	1
239	HPC enabled parallel, multi-scale & mechanistic model for high shear granulation using a coupled DEM-PBM framework. Computer Aided Chemical Engineering, 2018, 44, 1459-1464.	0.3	1
240	Techno-economic and Life Cycle Analysis of MixAlco \hat{A}^{\otimes} Processes for Mixed Alcohol Production from Brown Algae. Applied Biochemistry and Biotechnology, 2021, 193, 2964-2982.	1.4	1
241	A Systematic Framework for the Design and Implementation of Sensing and Control Architecture for a Continuous Pharmaceutical Manufacturing Plant. Computer Aided Chemical Engineering, 2016, 38, 1473-1478.	0.3	1
242	New stability analysis based on iterative sampling and optimization. AICHE Journal, 2002, 48, 187-192.	1.8	O
243	Incorporation of flexibility in scheduling decision-making. Computer Aided Chemical Engineering, 2003, 15, 226-231.	0.3	O
244	Scheduling under demand uncertainty using a new multiparametric programming approach. Computer Aided Chemical Engineering, 2006, 21, 2141-2146.	0.3	O
245	Minimal reaction sets and metabolic pathways for cultured hepatocytes. Computer Aided Chemical Engineering, 2006, 21, 1711-1716.	0.3	O
246	Dimensionality reduction in feasibility analysis by latent variable modeling. Computer Aided Chemical Engineering, 2018, 44, 1477-1482.	0.3	O
247	Real-time design space description in pharmaceutical manufacturing. Computer Aided Chemical Engineering, 2019, 46, 661-666.	0.3	O
248	Experimental investigation and modelling of tensile strength of pharmaceutical tablets based on shear force applied by feed frame paddles. International Journal of Pharmaceutics, 2021, 606, 120908.	2.6	O
249	International Programming Committee. Computer Aided Chemical Engineering, 2014, 34, xvi-xvii.	0.3	O
250	Developing process models of an open-loop integrated system. , 2022, , 229-250.		0