Laurent Cerutti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3237589/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Free-Space Communication With Directly Modulated Mid-Infrared Quantum Cascade Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-9.	1.9	46
2	Crystal Phase Control during Epitaxial Hybridization of Illâ€V Semiconductors with Silicon. Advanced Electronic Materials, 2022, 8, 2100777.	2.6	18
3	Semiconductor plasmonics and metamaterials for IR applications. , 2022, , .		0
4	Quantum plasmonics and hyperbolic material for biosensing. , 2022, , .		0
5	Impact of the ridge etchingâ€depth on GaSbâ€based laser diodes. Electronics Letters, 2022, 58, 162-163.	0.5	0
6	Mid-infrared Ill–V semiconductor lasers epitaxially grown on Si substrates. Light: Science and Applications, 2022, 11, .	7.7	20
7	GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates. Optics Express, 2021, 29, 11268.	1.7	9
8	Thermal performance of GalnSb quantum well lasers for silicon photonics applications. Applied Physics Letters, 2021, 118, .	1.5	4
9	Carrier recombination and temperature-dependence of GaInSb quantum well lasers for silicon photonics applications. , 2021, , .		0
10	Quantum well interband semiconductor lasers highly tolerant to dislocations. Optica, 2021, 8, 1397.	4.8	14
11	Relative intensity noise and intrinsic properties of RF mounted interband cascade laser. Applied Physics Letters, 2021, 119, .	1.5	10
12	Carrier Recombination Processes in 2.3-µm Epitaxially Grown Mid-Infrared Laser Diodes on Si(001). , 2021, , .		0
13	Molecular-beam epitaxy of GaSb on 6°-offcut (0 0 1) Si using a GaAs nucleation layer. Journal of Crystal Growth, 2020, 529, 125299.	0.7	6
14	Heavily Doped Semiconductor Metamaterials for Midâ€Infrared Multispectral Perfect Absorption and Thermal Emission. Advanced Optical Materials, 2020, 8, 1901502.	3.6	27
15	Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region. Reaction Chemistry and Engineering, 2020, 5, 124-135.	1.9	10
16	Interband mid-infrared lasers. , 2020, , 91-130.		7
17	Optical properties and dynamics of excitons in Ga(Sb, Bi)/GaSb quantum wells: evidence for a regular alloy behavior. Semiconductor Science and Technology, 2020, 35, 025024.	1.0	3

18 Progress in Interband Cascade Lasers: From Edge Emitting Lasers to VCSELs. , 2020, , .

0

#	Article	IF	CITATIONS
19	InAs-based quantum cascade lasers grown on on-axis (001) silicon substrate. APL Photonics, 2020, 5, .	3.0	22
20	Zinc-blende group III-V/group IV epitaxy: Importance of the miscut. Physical Review Materials, 2020, 4, .	0.9	23
21	Etched-cavity GaSb laser diodes on a MOVPE GaSb-on-Si template. Optics Express, 2020, 28, 20785.	1.7	9
22	Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon. Optica, 2020, 7, 263.	4.8	42
23	Long-wave infrared spectral filter with semiconductor materials. , 2020, , .		1
24	3.3 Âμm interband-cascade resonant-cavity light-emitting diode with narrow spectral emission linewidth. Semiconductor Science and Technology, 2020, 35, 125029.	1.0	6
25	Semiconductor nanostructures for spectral filtering. , 2020, , .		О
26	The Interaction of Extended Defects as the Origin of Step Bunching in Epitaxial III–V Layers on Vicinal Si(001) Substrates. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900290.	1.2	3
27	Giant Rabi splitting at the phonon line within all-semiconductor metallic-insulator-metallic antennas. Physical Review B, 2019, 100, .	1.1	7
28	GaSbBi Alloys and Heterostructures: Fabrication and Properties. Springer Series in Materials Science, 2019, , 125-161.	0.4	1
29	Molecular-beam epitaxy of GaInSbBi alloys. Journal of Applied Physics, 2019, 126, .	1.1	6
30	Type I GaSb1-xBix/GaSb quantum wells dedicated for mid infrared laser applications: Photoreflectance studies of bandgap alignment. Journal of Applied Physics, 2019, 125, .	1.1	16
31	Surface-Enhanced Thermal Emission Spectroscopy with Perfect Absorber Metasurfaces. ACS Photonics, 2019, 6, 1506-1514.	3.2	28
32	Metamaterial perfect absorber based on heavily doped semiconductor for thermal emission. , 2019, , .		1
33	Toward MIR VCSELs operating in CW at RT. , 2019, , .		Ο
34	Midwave infrared barrier detector based on Ga-free InAs/InAsSb type-II superlattice grown by molecular beam epitaxy on Si substrate. Infrared Physics and Technology, 2019, 96, 39-43.	1.3	29
35	Interband cascade Lasers with AlGaAsSb cladding layers emitting at 33â€Âµm. Optics Express, 2019, 27, 31425.	1.7	10
36	Infrared spectral filter based on all-semiconductor guided-mode resonance. Optics Letters, 2019, 44, 3090.	1.7	10

#	Article	IF	CITATIONS
37	Industrial Low noise tunable integrated semiconductor laser: Dynamic instability and route to single frequency operation. , 2019, , .		0
38	Semiconductor-based nanostructures for spectral filtering. , 2019, , .		1
39	Microstructure and interface analysis of emerging Ga(Sb,Bi) epilayers and Ga(Sb,Bi)/GaSb quantum wells for optoelectronic applications. Applied Physics Letters, 2018, 112, .	1.5	14
40	Optical Detection and Spatial Modulation of Midâ€Infrared Surface Plasmon Polaritons in a Highly Doped Semiconductor. Advanced Optical Materials, 2018, 6, 1700492.	3.6	3
41	On the origin of threading dislocations during epitaxial growth of III-Sb on Si(001): A comprehensive transmission electron tomography and microscopy study. Acta Materialia, 2018, 143, 121-129.	3.8	12
42	Anti phase boundary free GaSb layer grown on 300 mm (001)-Si substrate by metal organic chemical vapor deposition. Thin Solid Films, 2018, 645, 5-9.	0.8	18
43	Pedestal formation of all-semiconductor gratings through GaSb oxidation for mid-IR plasmonics. Journal Physics D: Applied Physics, 2018, 51, 015104.	1.3	5
44	Quantum cascade lasers grown on silicon. , 2018, , .		0
45	Interface energy analysis of III–V islands on Si (001) in the Volmer-Weber growth mode. Applied Physics Letters, 2018, 113, .	1.5	14
46	Spectroscopic Nanoimaging of All-Semiconductor Plasmonic Gratings Using Photoinduced Force and Scattering Type Nanoscopy. ACS Photonics, 2018, 5, 4352-4359.	3.2	10
47	Epitaxial Integration of Antimonide-Based Semiconductor Lasers on Si. Semiconductors and Semimetals, 2018, , 1-25.	0.4	2
48	A Stressâ€Free and Textured GaP Template on Silicon for Solar Water Splitting. Advanced Functional Materials, 2018, 28, 1801585.	7.8	22
49	In situ determination of the growth conditions of GaSbBi alloys. Journal of Crystal Growth, 2018, 495, 9-13.	0.7	7
50	Phosphonate monolayers on InAsSb and GaSb surfaces for mid-IR plasmonics. Applied Surface Science, 2018, 451, 241-249.	3.1	12
51	Transmission electron microscopy of Ga(Sb, Bi)/GaSb quantum wells with varying Bi content and quantum well thickness. Semiconductor Science and Technology, 2018, 33, 094006.	1.0	4
52	GaSb Lasers Grown on Silicon Substrate for Telecom Applications. , 2018, , 625-635.		2
53	Mid-IR plasmonic compound with gallium oxide toplayer formed by GaSb oxidation in water. Semiconductor Science and Technology, 2018, 33, 095009.	1.0	3
54	Quantum cascade lasers grown on silicon. Scientific Reports, 2018, 8, 7206.	1.6	56

#	Article	IF	CITATIONS
55	Universal description of III-V/Si epitaxial growth processes. Physical Review Materials, 2018, 2, .	0.9	43
56	Electron tomography on III-Sb heterostructures on vicinal Si(001) substrates: Anti-phase boundaries as a sink for threading dislocations. Scripta Materialia, 2017, 132, 5-8.	2.6	9
57	InAs/InAsSb superlattice structure tailored for detection of the full midwave infrared spectral domain. Proceedings of SPIE, 2017, , .	0.8	8
58	Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial. Nanotechnology, 2017, 28, 125701.	1.3	5
59	Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR. , 2017, , .		1
60	Characterization of antimonide based material grown by molecular epitaxy on vicinal silicon substrates via a low temperature AlSb nucleation layer. Journal of Crystal Growth, 2017, 477, 65-71.	0.7	15
61	GaSbBi/GaSb quantum well laser diodes. Applied Physics Letters, 2017, 110, .	1.5	45
62	Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys. Journal of Crystal Growth, 2017, 477, 144-148.	0.7	39
63	Metal-insulator-metal antennas in the far-infrared range based on highly doped InAsSb. Applied Physics Letters, 2017, 111, .	1.5	13
64	Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin. Nanophotonics, 2017, 7, 507-516.	2.9	33
65	From 1-dimensional to 2-dimensional periodic semiconductor plasmonic resonators: Designing the optical response for sensing applications. , 2017, , .		Ο
66	Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion. Optical Materials Express, 2017, 7, 3011.	1.6	14
67	Hyperbolic metamaterials and surface plasmon polaritons. Optica, 2017, 4, 1409.	4.8	41
68	Hyperbolic metamaterials and surface plasmon polaritons: publisher's note. Optica, 2017, 4, 1558.	4.8	1
69	Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas. Optics Express, 2017, 25, 26651.	1.7	15
70	Near-field Studies of Thermal Radiation and Local Density of States. , 2017, , .		0
71	Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si. APL Photonics, 2017, 2, .	3.0	36
72	Plasmonic bio-sensing based on highly doped semiconductors. , 2017, , .		2

#	Article	IF	CITATIONS
73	Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications. , 2017, , .		0
74	THz absorbers with highly doped semiconductors based in plasmonic nano-resonators. , 2016, , .		0
75	Highly doped InAsSb plasmonic arrays for mid-infrared biosensing. , 2016, , .		0
76	CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 <i>$\hat{1}/4$</i> m window. Review of Scientific Instruments, 2016, 87, 083109.	0.6	17
77	First orientation-patterned GaSb ridge waveguides fabrication and preliminary characterization for frequency conversion in the mid-infrared. Proceedings of SPIE, 2016, , .	0.8	1
78	Metamorphic III–V semiconductor lasers grown on silicon. MRS Bulletin, 2016, 41, 218-223.	1.7	47
79	III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range. Optics Express, 2016, 24, 9465.	1.7	36
80	Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures. Nanotechnology, 2016, 27, 425201.	1.3	23
81	All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range. Optics Express, 2016, 24, 16175.	1.7	57
82	GaSb lasers grown on Silicon substrate emitting in the telecom wavelength range. , 2016, , .		0
83	X-ray diffraction study of GaSb grown by molecular beam epitaxy on silicon substrates. Journal of Crystal Growth, 2016, 439, 33-39.	0.7	32
84	Industrial integration of high coherence tunable VECSEL in the NIR and MIR. , 2016, , .		1
85	Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1â^'XAsSb waveguides. Applied Physics Letters, 2015, 107, .	1.5	15
86	GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55- <i>μ<</i> m. Applied Physics Letters, 2015, 106, .	1.5	12
87	Observation of Fano resonances in highly doped semiconductors plasmonic resonators (Presentation) Tj ETQq	1 1 0,7843 0.8	14 rgBT /Overl
88	Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix. Optics Express, 2015, 23, 29423.	1.7	10
89	Silicon surface preparation for III-V molecular beam epitaxy. Journal of Crystal Growth, 2015, 413, 17-24.	0.7	27
90	GaAs/AlOxhigh-contrast grating mirrors for mid-infrared VCSELs. , 2015, , .		0

6

#	Article	IF	CITATIONS
91	Parameter-tolerant design of high contrast gratings. , 2015, , .		0
92	Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications. Optics Express, 2015, 23, 19118.	1.7	32
93	M-lines characterization of the refractive index of GaSb and AlXGa1-XAsSb lattice-matched onto GaSb in the mid-infrared. , 2015, , .		0
94	Distributed-feedback GaSb-based laser diodes in the 2.3 to $3.3\hat{l}^{1}\!/m$ wavelength range. Proceedings of SPIE, 2014, , .	0.8	1
95	Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring. Optics Express, 2014, 22, 27300.	1.7	26
96	Brewster "mode―in highly doped semiconductor layers: an all-optical technique to monitor doping concentration. Optics Express, 2014, 22, 24294.	1.7	54
97	Industrial integration of high coherence tunable VECSEL in the NIR and MIR. Proceedings of SPIE, 2014, ,	0.8	2
98	Long-wavelength silicon photonic integrated circuits. , 2014, , .		0
99	Distributed feedback GaSb based laser diodes with buried grating. Applied Physics Letters, 2014, 104, .	1.5	18
100	Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 394-404.	1.9	106
101	Technologies of oxide confinement and high contrast grating mirrors for mid-infrared VCSELs. , 2014, , .		0
102	Mid-IR heterogeneous silicon photonics. Proceedings of SPIE, 2013, , .	0.8	2
103	Mid-IR GaSb-Based Bipolar Cascade VCSELs. IEEE Photonics Technology Letters, 2013, 25, 882-884.	1.3	14
104	Thermal Management for High-Power Single-Frequency Tunable Diode-Pumped VECSEL Emitting in the Near- and Mid-IR. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1701108-1701108.	1.9	20
105	Method for improving the electrical insulating properties of wet thermal oxide of AlAsSb on GaSb substrates. Applied Physics Letters, 2013, 103, .	1.5	4
106	All-semiconductor plasmonics for mid-IR applications. , 2013, , .		3
107	Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Optics Express, 2013, 21, 6101.	1.7	82
108	Silicon-based heterogeneous photonic integrated circuits for the mid-infrared. Optical Materials Express, 2013, 3, 1523.	1.6	65

#	Article	IF	CITATIONS
109	Oxide confinement and high contrast grating mirrors for Mid-infrared VCSELs. Optical Materials Express, 2013, 3, 1576.	1.6	11
110	Mid-IR GaSb-based monolithic vertical-cavity surface-emitting lasers. Journal Physics D: Applied Physics, 2013, 46, 495101.	1.3	6
111	GaSb-based all-semiconductor mid-IR plasmonics. , 2013, , .		3
112	Integrated thin-film GaSb-based Fabry-Perot lasers: towards a fully integrated spectrometer on a SOI waveguide circuit. , 2013, , .		5
113	Silicon-on-Insulator spectrometers with integrated GaInAsSb photodiode array for wideband operation from 1500 to 2300 nm , 2013, , .		0
114	Selective lateral etching of InAs/GaSb tunnel junctions for mid-infrared photonics. Semiconductor Science and Technology, 2012, 27, 085011.	1.0	8
115	Study of evanescently-coupled and grating-assisted GalnAsSb photodiodes integrated on a silicon photonic chip. Optics Express, 2012, 20, 11665.	1.7	51
116	Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser. Optics Express, 2012, 20, 15540.	1.7	22
117	Localized surface plasmon resonances in highly doped semiconductors nanostructures. Applied Physics Letters, 2012, 101, .	1.5	58
118	Integrated spectrometer and integrated detectors on Silicon-on-Insulator for short-wave infrared applications. , 2012, , .		1
119	High temperature continuous wave operation of Sb-based monolithic EP-VCSEL with Selectively Etched Tunnel-Junction Apertures. , 2012, , .		0
120	2.7-μm single-frequency TEM00 operation of Sb-based diode-pumped external-cavity VCSEL. , 2012, , .		1
121	Oxide-confined mid-infrared VCSELs. Electronics Letters, 2012, 48, 1616-1618.	0.5	11
122	2.7-\$mu{m m}\$ Single-Frequency \${m TEM}_{00}\$ Low-Threshold Sb-Based Diode-Pumped External-Cavity VCSEL. IEEE Photonics Technology Letters, 2012, 24, 246-248.	1.3	11
123	AlOx/GaAs high contrast grating mirrors for mid infrared VCSELs. , 2012, , .		0
124	GaSb-based integrated lasers and photodetectors on a Silicon-On-Insulator waveguide circuit for sensing applications in the shortwave infrared. , 2012, , .		6
125	GaSb-based laser monolithically grown on Si substrate by molecular beam epitaxy. , 2012, , .		0
126	GaSb-based laser monolithically grown on Si substrate operating under cw at room temperature. , 2012, , .		0

#	Article	IF	CITATIONS
127	III–V/Silicon Photonics for Short-Wave Infrared Spectroscopy. IEEE Journal of Quantum Electronics, 2012, 48, 292-298.	1.0	8
128	Optimized GaAs High Contrast Grating Design and Fabrication for Mid-infrared Application at 2.3 ŵm. , 2011, , .		0
129	Heterogeneous Integration of GaInAsSb p-i-n Photodiodes on a Silicon-on-Insulator Waveguide Circuit. IEEE Photonics Technology Letters, 2011, 23, 1760-1762.	1.3	34
130	Design and properties of high-power highly coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications. Proceedings of SPIE, 2011, , .	0.8	7
131	Heterogeneous GaSb/SOI mid-infrared photonic integrated circuits for spectroscopic applications. , 2011, , .		3
132	Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source. Journal Physics D: Applied Physics, 2011, 44, 142001.	1.3	7
133	Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si. Applied Physics Letters, 2011, 99, .	1.5	78
134	Heterogeneously integrated InGaAsSb detectors on SOI waveguide circuits for short-wave infrared applications. , 2011, , .		0
135	Sb-based laser sources grown by molecular beam epitaxy on silicon substrates. Proceedings of SPIE, 2010, , .	0.8	0
136	Technologies for thermal management of mid-IR Sb-based surface emitting lasers. Semiconductor Science and Technology, 2010, 25, 045021.	1.0	17
137	Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser. IEEE Photonics Technology Letters, 2010, 22, 1607-1609.	1.3	13
138	GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 \$mu\$m at Room Temperature. IEEE Photonics Technology Letters, 2010, 22, 553-555.	1.3	67
139	GaSb-based mid-IR electrically-pumped VCSELs covering the wavelength range from 2.3 to 2.7 µm. , 2009, , .		0
140	Broad continuous tunable range with single frequency Sb-based external-cavity VCSEL emitting in MIR. Electronics Letters, 2009, 45, 629.	0.5	5
141	MBE growth of mid-IR diode lasers based on InAs/GaSb/InSb short-period superlattice active zones. Journal of Crystal Growth, 2009, 311, 1905-1907.	0.7	6
142	GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3μm) grown by MBE. Journal of Crystal Growth, 2009, 311, 1912-1916.	0.7	29
143	Mid-infrared GaSb-based EP-VCSEL emitting at 2.63â€[micro sign]m. Electronics Letters, 2009, 45, 265.	0.5	33
144	Room-temperature operation of a 2.25â€,μm electrically pumped laser fabricated on a silicon substrate. Applied Physics Letters, 2009, 94, .	1.5	37

#	Article	IF	CITATIONS
145	Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells. Electronics Letters, 2009, 45, 1320.	0.5	5
146	GaSb-based, 2.2â€,μm type-l laser fabricated on GaAs substrate operating continuous wave at room temperature. Applied Physics Letters, 2009, 94, 023506.	1.5	40
147	Room temperature, continuous wave operation of an Sb-based laser grown on GaAs substrate. , 2009, ,		Ο
148	Demonstration of laser operation at room-temperature of an Sb-based mid-infrared multi-quantum-well structure monolithically grown on a Silicon substrate. , 2009, , .		0
149	Room temperature continuous wave operation of electrically-injected Sb-based RC-LED emitting near. Superlattices and Microstructures, 2008, 44, 62-69.	1.4	2
150	On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2008, 310, 4035-4045.	0.7	165
151	Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 μm and Including a Tunnel Junction. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1014-1021.	1.9	13
152	Extended Continuous Tuning of a Single-Frequency Diode-Pumped Vertical-External-Cavity Surface-Emitting Laser at 2.3 \$mu\$m. IEEE Photonics Technology Letters, 2008, 20, 1947-1949.	1.3	16
153	Room-Temperature Continuous-Wave Operation of 2.3-\$mu\$m Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers. IEEE Photonics Technology Letters, 2008, 20, 1745-1747.	1.3	20
154	Monolithic, Sb-based electrically pumped VCSELs emitting at 2.31 $^{1}\!\!/$ 4m. , 2008, , .		0
155	GaSb-based microcavity EP-VCSEL emitting above 2.2 \hat{l} 4 m in CW regime at RT. , 2008, , .		0
156	GaSb-based monolithic EP-VCSEL emitting above 2.5â€[micro sign]m. Electronics Letters, 2008, 44, 1357.	0.5	5
157	Room-temperature, monolithic, electrically-pumped type-L quantum-well Sb-based VCSELs emitting at 2.3â€[micro sign]m. Electronics Letters, 2008, 44, 203.	0.5	15
158	Room temperature, Sb-based monolithic EP-VCSEL at 2.3 μm including 2 n-type DBR. , 2008, , .		0
159	InAs/GaSb short-period superlattice injection lasers operating in 2.5â€[micro sign]m–3.5â€[micro sign]m mid-infrared wavelength range. Electronics Letters, 2007, 43, 1285.	0.5	15
160	AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm. Semiconductor Science and Technology, 2007, 22, 1140-1144.	1.0	22
161	Gain, dichro $ ilde{A}$ sm and quantum efficiency of Sb-based Quantum-Well VCSELs. , 2007, , .		0
162	Growth and characterization of GaInSb/GaInAsSb hole-well laser diodes emitting near 2.93μm. Journal of Crystal Growth, 2007, 301-302, 967-970.	0.7	3

#	Article	IF	CITATIONS
163	Room temperature Sb-based mid-infrared VCSELs. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1591-1596.	0.8	1
164	Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns. Physica Status Solidi (B): Basic Research, 2007, 244, 2838-2846.	0.7	4
165	Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Physica Status Solidi (B): Basic Research, 2007, 244, 2816-2837.	0.7	148
166	Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy. Applied Physics Letters, 2006, 88, 213114.	1.5	153
167	2-2.7μm single frequency tunable Sb-based lasers operating in CW at RT: microcavity and external cavity VCSELs, DFB. , 2006, , .		18
168	Hole-well antimonide laser diodes on GaSb operating near 2.93â€[micro sign]m. Electronics Letters, 2006, 42, 1400.	0.5	6
169	VCSELs Emitting in the 2–3 µm Wavelength Range. Springer Series in Optical Sciences, 2006, , 159-188.	0.5	2
170	MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection. Journal of Crystal Growth, 2005, 274, 6-13.	0.7	91
171	Intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser at 2.31¼m: Application to water and carbon dioxide. Chemical Physics Letters, 2005, 416, 22-27.	1.2	38
172	Vertical Cavity Surface Emitting Laser sources for gas detection. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 631-635.	0.8	15
173	Interfaces in GaxIn1â^'xAsySb1â^'yâ^•AlxGa1â^'xAsySb1â^'y multi-quantum-well heterostructures probed by transmittance anisotropy spectroscopy. Journal of Applied Physics, 2005, 98, 066107.	1.1	3
174	Single-frequency tunable Sb-based VCSELs emitting at 2.3 /spl mu/m. IEEE Photonics Technology Letters, 2005, 17, 2020-2022.	1.3	66
175	Sb-based VCSEL operating at 2.3 μm in continuous wave regime up to 350 K with a TEM00beam. European Physical Journal Special Topics, 2004, 119, 147-148.	0.2	0
176	2.36â€[micro sign]m diode pumped VCSEL operating at room temperature in continuous wave with circular TEM00 output beam. Electronics Letters, 2004, 40, 869.	0.5	20
177	High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3î¼m. Journal of Crystal Growth, 2004, 268, 128-134.	0.7	46
178	<title>Continuous-wave operation up to 350K of optically-pumped antimony-based midinfrared
VCSELs</title> . , 2004, , .		0
179	Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1â€[micro sign]m. Electronics Letters, 2003, 39, 290.	0.5	30
180	Type-I quantum-well VCSEL structure on GaSb emitting in the 2–2.5 μm range. IEE Proceedings: Optoelectronics, 2002, 149, 22-26.	0.8	3

#	Article	IF	CITATIONS
181	Low threshold efficient Sb-based type-I quantum-well VCSEL emitting in the \hat{I} » = 2-2.5 \hat{I} /4m range. , 0, , .		2
182	Diode-pumped Sb-based VCSEL emitting between 2-2.5 $\hat{l} \frac{1}{4}$ m at RT in CW. , 0, , .		0
183	Continuous-wave operation at room temperature of diode-pumped antimony-based vcsel emitting above 2 \hat{l} 4m. , 0, , .		Ο
184	Single-frequency tunable VECSELs emitting at 2.3μm for spectroscopy application. , 0, , .		0