Basil Rigas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3237581/publications.pdf

Version: 2024-02-01

185998 155451 3,056 66 28 55 h-index citations g-index papers 68 68 68 3194 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrogel formulation of phosphosulindac allows once-a-day ocular dosing and limits its biodistribution to the anterior chamber: Application to dry eye disease treatment. Journal of Drug Delivery Science and Technology, 2022, 67, 102961.	1.4	2
2	An Improved Ocular Impression Cytology Method: Quantitative Cell Transfer to Microscope Slides Using a Novel Polymer. Current Eye Research, 2022, 47, 41-50.	0.7	O
3	Once-Daily Topical Phosphosulindac Is Efficacious in the Treatment of Dry Eye Disease: Studies in Rabbit Models of Its Main Clinical Subtypes. Journal of Ocular Pharmacology and Therapeutics, 2022, 38, 102-113.	0.6	2
4	Diagnosis of Dry Eye Disease Using Principal Component Analysis: A Study in Animal Models of the Disease. Current Eye Research, 2021, 46, 622-629.	0.7	3
5	The transcriptome of rabbit conjunctiva in dry eye disease: Large-scale changes and similarity to the human dry eye. PLoS ONE, 2021, 16, e0254036.	1.1	3
6	Phospho-Sulindac (OXT-328) Inhibits Dry Eye Disease in Rabbits: A Dose-, Formulation- and Structure-Dependent Effect. Journal of Ocular Pharmacology and Therapeutics, 2021, 37, 321-330.	0.6	1
7	Animal models of dry eye disease: Useful, varied and evolving (Review). Experimental and Therapeutic Medicine, 2021, 22, 1394.	0.8	18
8	Simplified ex-vivo drug evaluation in ocular surface cells: Culture on cellulose filters of cells obtained by impression cytology. Experimental Eye Research, 2021, 213, 108827.	1.2	0
9	NSAID-induced corneal melt: Clinical importance, pathogenesis, and risk mitigation. Survey of Ophthalmology, 2020, 65, 1-11.	1.7	48
10	A Rabbit Model of Aqueous-Deficient Dry Eye Disease Induced by Concanavalin A Injection into the Lacrimal Glands: Application to Drug Efficacy Studies. Journal of Visualized Experiments, 2020, , .	0.2	5
11	Establishment of a Severe Dry Eye Model Using Complete Dacryoadenectomy in Rabbits. Journal of Visualized Experiments, 2020, , .	0.2	3
12	Phospho-valproic acid (MDC-1112) suppresses glioblastoma growth in preclinical models through the inhibition of STAT3 phosphorylation. Carcinogenesis, 2019, 40, 1480-1491.	1.3	9
13	A New Rabbit Model of Chronic Dry Eye Disease Induced by Complete Surgical Dacryoadenectomy. Current Eye Research, 2019, 44, 863-872.	0.7	18
14	The ocular pharmacokinetics and biodistribution of phospho-sulindac (OXT-328) formulated in nanoparticles: Enhanced and targeted tissue drug delivery. International Journal of Pharmaceutics, 2019, 557, 273-279.	2.6	13
15	Phosphosulindac is efficacious in an improved concanavalin A-based rabbit model of chronic dry eye disease. Translational Research, 2018, 198, 58-72.	2.2	18
16	The Chemoprevention of Ovarian Cancer: the Need and the Options. Current Pharmacology Reports, 2018, 4, 250-260.	1.5	12
17	Alkaline Ceramidase 1 Protects Mice from Premature Hair Loss by Maintaining the Homeostasis of Hair Follicle Stem Cells. Stem Cell Reports, 2017, 9, 1488-1500.	2.3	18
18	Phospho-valproic acid inhibits pancreatic cancer growth in mice: Enhanced efficacy by its formulation in poly-(L)-lactic acid-poly(ethylene glycol) nanoparticles. International Journal of Oncology, 2017, 51, 1035-1044.	1.4	10

#	Article	IF	CITATIONS
19	Phospho-Aspirin (MDC-22) Prevents Pancreatic Carcinogenesis in Mice. Cancer Prevention Research, 2016, 9, 624-634.	0.7	11
20	NSAIDs and Colorectal Cancer Control: Promise and Challenges. Current Pharmacology Reports, 2015, 1, 295-301.	1.5	42
21	Repurposing the Antipsychotic Trifluoperazine as an Antimetastasis Agent. Molecular Pharmacology, 2015, 87, 501-512.	1.0	49
22	The Evolving Role of Nonsteroidal Anti-Inflammatory Drugs in Colon Cancer Prevention: A Cause for Optimism. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 2-8.	1.3	30
23	Phospho-NSAIDs Have Enhanced Efficacy in Mice Lacking Plasma Carboxylesterase: Implications for their Clinical Pharmacology. Pharmaceutical Research, 2015, 32, 1663-1675.	1.7	17
24	Altered Interactions between the Gut Microbiome and Colonic Mucosa Precede Polyposis in APCMin/+ Mice. PLoS ONE, 2015, 10, e0127985.	1,1	48
25	Pegylation Improves the Pharmacokinetics and Bioavailability of Small-Molecule Drugs Hydrolyzable by Esterases: A Study of Phospho-Ibuprofen. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 61-66.	1.3	22
26	A novel ibuprofen derivative with anti-lung cancer properties: Synthesis, formulation, pharmacokinetic and efficacy studies. International Journal of Pharmaceutics, 2014, 477, 236-243.	2.6	9
27	The in vitro metabolism of phospho-sulindac amide, a novel potential anticancer agent. Biochemical Pharmacology, 2014, 91, 249-255.	2.0	5
28	Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress. BMC Cancer, 2014, 14, 141.	1.1	20
29	Phospho-sulindac inhibits pancreatic cancer growth: NFATc1 as a drug resistance candidate. International Journal of Oncology, 2014, 44, 521-529.	1.4	15
30	Phospho-Aspirin-2 (MDC-22) Inhibits Estrogen Receptor Positive Breast Cancer Growth Both In Vitro and In Vivo by a Redox-Dependent Effect. PLoS ONE, 2014, 9, e111720.	1.1	9
31	Topically Applied Phospho-Sulindac Hydrogel is Efficacious and Safe in the Treatment of Experimental Arthritis in Rats. Pharmaceutical Research, 2013, 30, 1471-1482.	1.7	9
32	The anticancer effect of phospho-tyrosol-indomethacin (MPI-621), a novel phosphoderivative of indomethacin: in vitro and in vivo studies. Carcinogenesis, 2013, 34, 943-951.	1.3	11
33	Aerosol Administration of Phospho-Sulindac Inhibits Lung Tumorigenesis. Molecular Cancer Therapeutics, 2013, 12, 1417-1428.	1.9	13
34	Targeting Mitochondrial STAT3 with the Novel Phospho-Valproic Acid (MDC-1112) Inhibits Pancreatic Cancer Growth in Mice. PLoS ONE, 2013, 8, e61532.	1.1	68
35	Carboxylesterases 1 and 2 Hydrolyze Phospho-Nonsteroidal Anti-Inflammatory Drugs: Relevance to Their Pharmacological Activity. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 422-432.	1.3	37
36	Topical phospho-sulindac (OXT-328) is effective in the treatment of non-melanoma skin cancer. International Journal of Oncology, 2012, 41, 1199-1203.	1.4	16

#	Article	IF	CITATIONS
37	Regioselective oxidation of phosphoâ€NSAIDs by human cytochrome P450 and flavin monooxygenase isoforms: implications for their pharmacokinetic properties and safety. British Journal of Pharmacology, 2012, 167, 222-232.	2.7	25
38	Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine, 2012, 7, 1577-1590.	1.7	132
39	Phospho-ibuprofen (MDC-917) suppresses breast cancer growth: an effect controlled by the thioredoxin system. Breast Cancer Research, 2012, 14, R20.	2.2	23
40	Phospho-Sulindac (OXT-328) Inhibits the Growth of Human Lung Cancer Xenografts in Mice: Enhanced Efficacy and Mitochondria Targeting by its Formulation in Solid Lipid Nanoparticles. Pharmaceutical Research, 2012, 29, 3090-3101.	1.7	16
41	FT-IR Microspectroscopy of Mouse Colon Tissues. American Journal of Pathology, 2012, 181, 1961-1968.	1.9	12
42	Phosphosulindac (OXT-328) Selectively Targets Breast Cancer Stem Cells In Vitro and in Human Breast Cancer Xenografts. Stem Cells, 2012, 30, 2065-2075.	1.4	26
43	Preclinical Predictors of Anticancer Drug Efficacy: Critical Assessment with Emphasis on Whether Nanomolar Potency Should Be Required of Candidate Agents: TABLE 1. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 572-578.	1.3	44
44	Sterically Stabilized Liposomes Incorporating the Novel Anticancer Agent Phospho-Ibuprofen (MDC-917): Preparation, Characterization, and In Vitro/In Vivo Evaluation. Pharmaceutical Research, 2012, 29, 1435-1443.	1.7	22
45	MC-12, an Annexin A1-Based Peptide, Is Effective in the Treatment of Experimental Colitis. PLoS ONE, 2012, 7, e41585.	1.1	29
46	Phospho-Ibuprofen (MDC-917) Is a Novel Agent against Colon Cancer: Efficacy, Metabolism, and Pharmacokinetics in Mouse Models. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 876-886.	1.3	33
47	Phospho-Sulindac (OXT-328) Combined with Difluoromethylornithine Prevents Colon Cancer in Mice. Cancer Prevention Research, 2011, 4, 1052-1060.	0.7	45
48	Oxidative Stress Mediates through Apoptosis the Anticancer Effect of Phospho-Nonsteroidal Anti-Inflammatory Drugs: Implications for the Role of Oxidative Stress in the Action of Anticancer Agents. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 775-783.	1.3	46
49	Chemotherapeutic Properties of Phospho-Nonsteroidal Anti-Inflammatory Drugs, a New Class of Anticancer Compounds. Cancer Research, 2011, 71, 7617-7627.	0.4	48
50	Phospho-sulindac (OXT-922) inhibits the growth of human colon cancer cell lines: a redox/polyamine-dependent effect. Carcinogenesis, 2010, 31, 1982-1990.	1.3	27
51	Phospho-Sulindac (OXT-328), a Novel Sulindac Derivative, Is Safe and Effective in Colon Cancer Prevention in Mice. Gastroenterology, 2010, 139, 1320-1332.	0.6	54
52	Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect. Carcinogenesis, 2009, 30, 512-519.	1.3	31
53	Screening for colorectal cancer: does it all start with aberrant crypt foci?. Gastrointestinal Endoscopy, 2008, 67, 1103-1105.	0.5	4
54	NO-donating aspirin inhibits the activation of NF-κB in human cancer cell lines and Min mice. Carcinogenesis, 2008, 29, 390-397.	1.3	41

#	Article	IF	CITATIONS
55	The Thioredoxin System Mediates Redox-Induced Cell Death in Human Colon Cancer Cells: Implications for the Mechanism of Action of Anticancer Agents. Cancer Research, 2008, 68, 8269-8277.	0.4	101
56	The novel phenylester anticancer compounds: Study of a derivative of aspirin (phoshoaspirin). International Journal of Oncology, 2008, 32, 97-100.	1.4	10
57	The use of nitric oxide-donating nonsteroidal anti-inflammatory drugs in the chemoprevention of colorectal neoplasia. Current Opinion in Gastroenterology, 2007, 23, 55-59.	1.0	48
58	NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR) \hat{l}' expression in APCmin /+ mice proportionally to their tumor inhibitory effect: Implications for the role of PPAR \hat{l}' in carcinogenesis. Carcinogenesis, 2006, 27, 232-239.	1.3	60
59	Cancer Prevention: A New Era beyond Cyclooxygenase-2. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1-8.	1.3	48
60	Positional Isomerism Markedly Affects the Growth Inhibition of Colon Cancer Cells by Nitric Oxide-Donating Aspirin in Vitro and in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 978-988.	1.3	79
61	NO-donating aspirin inhibits intestinal carcinogenesis in Min (APCMin/+) mice. Biochemical and Biophysical Research Communications, 2004, 313, 784-788.	1.0	90
62	Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends in Molecular Medicine, 2004, 10, 324-330.	3.5	139
63	The Role of Cyclooxygenase Inhibition in the Antineoplastic Effects of Nonsteroidal Antiinflammatory Drugs (Nsaids). Journal of Experimental Medicine, 1999, 190, 445-450.	4.2	153
64	Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochemical Pharmacology, 1996, 52, 237-245.	2.0	572
65	Nonsteroidal Antiinflammatory Drugs Inhibit the Proliferation of Colon Adenocarcinoma Cells: Effects on Cell Cycle and Apoptosis. Experimental Cell Research, 1996, 222, 179-188.	1.2	311
66	Selected eicosanoids increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo. Lipids and Lipid Metabolism, 1995, 1258, 215-223.	2.6	167