Masataka Nishiga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/323754/publications.pdf

Version: 2024-02-01

566801 552369 26 1,938 15 26 citations g-index h-index papers 26 26 26 3970 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Cardiology, 2022, 19, 505-521.	6.1	21
2	Ferroptosis of Pacemaker Cells in COVID-19. Circulation Research, 2022, 130, 978-980.	2.0	4
3	Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell, 2022, $185, 1676-1693.e23$.	13.5	40
4	Therapeutic genome editing in cardiovascular diseases. Advanced Drug Delivery Reviews, 2021, 168, 147-157.	6.6	23
5	CRISPRi/a Screening with Human iPSCs. Methods in Molecular Biology, 2021, 2320, 261-281.	0.4	13
6	microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nature Communications, 2021, 12, 843.	5.8	14
7	Macrophages: Potential Therapeutic Target of Myocardial Injury in COVID-19. Circulation Research, 2021, 129, 47-49.	2.0	2
8	Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends in Genetics, 2021, 37, 1109-1123.	2.9	14
9	COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature Reviews Cardiology, 2020, 17, 543-558.	6.1	999
10	Lionheart LincRNA alleviates cardiac systolic dysfunction under pressure overload. Communications Biology, 2020, 3, 434.	2.0	3
11	Identification of Differential Roles of MicroRNAâ€33a and â€33b During Atherosclerosis Progression With Genetically Modified Mice. Journal of the American Heart Association, 2019, 8, e012609.	1.6	17
12	An <i>in Vivo</i> miRNA Delivery System for Restoring Infarcted Myocardium. ACS Nano, 2019, 13, 9880-9894.	7.3	101
13	MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons. Clinical Science, 2019, 133, 583-595.	1.8	7
14	MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6C ^{high} Monocytes through Dual Pathways. Molecular and Cellular Biology, 2018, 38, .	1.1	11
15	Induced pluripotent stem cells as a biopharmaceutical factory for extracellular vesicles. European Heart Journal, 2018, 39, 1848-1850.	1.0	11
16	Hepatokine $\hat{l}\pm 1$ -Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Scientific Reports, 2018, 8, 16749.	1.6	9
17	<i>SREBF1</i> /MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2460-2473.	1.1	24
18	Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Scientific Reports, 2018, 8, 8553.	1.6	22

#	Article	IF	CITATIONS
19	Dynamic changes of serum microRNAâ€122â€5p through therapeutic courses indicates amelioration of acute liver injury accompanied by acute cardiac decompensation. ESC Heart Failure, 2017, 4, 112-121.	1.4	16
20	MicroRNA-33 Controls Adaptive Fibrotic Response in the Remodeling Heart by Preserving Lipid Raft Cholesterol. Circulation Research, 2017, 120, 835-847.	2.0	55
21	Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2161-2170.	1.1	69
22	Prevention of neointimal formation using miRNA-126-containing nanoparticle-conjugated stents in a rabbit model. PLoS ONE, 2017, 12, e0172798.	1.1	28
23	Expression Patterns of miRNA-423-5p in the Serum and Pericardial Fluid in Patients Undergoing Cardiac Surgery. PLoS ONE, 2015, 10, e0142904.	1.1	23
24	MicroRNA-451 Exacerbates Lipotoxicity in Cardiac Myocytes and High-Fat Diet-Induced Cardiac Hypertrophy in Mice Through Suppression of the LKB1/AMPK Pathway. Circulation Research, 2015, 116, 279-288.	2.0	185
25	MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo. Scientific Reports, 2014, 4, 5312.	1.6	44
26	MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nature Communications, 2013, 4, 2883.	5.8	183