List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3236992/publications.pdf Version: 2024-02-01

Ρινονή Ιλνο

#	Article	lF	CITATIONS
1	Unequal area facility layout problem-solving: a real case study on an air-conditioner production shop floor. International Journal of Production Research, 2023, 61, 1479-1496.	7.5	8
2	Investigation on industrial dataspace for advanced machining workshops: enabling machining operations control with domain knowledge and application case studies. Journal of Intelligent Manufacturing, 2022, 33, 103-119.	7.3	13
3	An Industry 4.0 Platform for Equipment Monitoring and Maintaining in Carbon Anode Production. IFAC-PapersOnLine, 2022, 55, 37-41.	0.9	2
4	Adaptability analysis of design for additive manufacturing by using fuzzy Bayesian network approach. Advanced Engineering Informatics, 2022, 52, 101613.	8.0	10
5	Modeling of Machining Errors' Accumulation Driven by RFID Graphical Deduction Computing in Multistage Machining Processes. IEEE Transactions on Industrial Informatics, 2021, 17, 3971-3981.	11.3	1
6	A Heuristic Grafting Strategy for Manufacturing Knowledge Graph Extending and Completion Based on Nature Language Processing: KnowTree. IEEE Access, 2021, 9, 90847-90862.	4.2	5
7	Social Production System: A Three-Layer Smart Framework for Implementing Autonomous Human-Machine Collaborations in a Shop Floor. IEEE Access, 2021, 9, 26696-26711.	4.2	7
8	Investigation on quantitative analysis of carbon footprint in discrete manufacturing by using the innovative energy dataspace approach. Manufacturing Letters, 2021, 27, 58-62.	2.2	1
9	Deep learning and complex network theory based analysis on socialized manufacturing resources utilisations and an application case study. Concurrent Engineering Research and Applications, 2021, 29, 236-248.	3.2	17
10	Enhanced agents in shared factory: Enabling high-efficiency self-organization and sustainability of the shared manufacturing resources. Journal of Cleaner Production, 2021, 292, 126020.	9.3	19
11	An integrated approach of Active Incremental fine-tuning, SegNet, and CRF for cutting tool wearing areas segmentation with small samples. Knowledge-Based Systems, 2021, 218, 106838.	7.1	8
12	Framework for designing a smart connected product service system. , 2021, , .		1
13	A collective intelligence oriented three-layer framework for socialized and collaborative product design. Expert Systems With Applications, 2021, 173, 114742.	7.6	10
14	A decision-making model for knowledge collaboration and reuse through scientific workflow. Advanced Engineering Informatics, 2021, 49, 101345.	8.0	4
15	Combining the strength of centralized control and distributed autonomy for crowdsourcing design: An integrated model of Blackboard and Bayesian network. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235, 1084-1097.	2.4	4
16	Improved Bayesian Causal Map Approach for Community-Based Product Design Project Feasibility Analysis. IEEE Transactions on Engineering Management, 2020, 67, 794-812.	3.5	5
17	RFID-Driven Energy-Efficient Control Approach of CNC Machine Tools Using Deep Belief Networks. IEEE Transactions on Automation Science and Engineering, 2020, 17, 129-141.	5.2	18
18	Contextual self-organizing of manufacturing process for mass individualization: a cyber-physical-social system approach. Enterprise Information Systems, 2020, 14, 1124-1149.	4.7	42

#	Article	IF	CITATIONS
19	Shared factory: A new production node for social manufacturing in the context of sharing economy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234, 285-294.	2.4	26
20	A survey of feature modeling methods: Historical evolution and new development. Robotics and Computer-Integrated Manufacturing, 2020, 61, 101851.	9.9	34
21	Socialized and self-organized collaborative designer community-resilience modeling and assessment. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2020, 31, 3-24.	2.1	18
22	A Manufacturing Network Modeling and Evolution Characterizing Approach for Self-Organization Among Distributed MSMEs Under Social Manufacturing Context. IEEE Access, 2020, 8, 119236-119251.	4.2	5
23	Consortium blockchain-driven decentralized organization and operation for manufacturing community in social manufacturing. , 2020, , .		3
24	Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey. Renewable and Sustainable Energy Reviews, 2020, 132, 110112.	16.4	271
25	P-SaaS: knowledge service oriented manufacturing workflow model for knowledge collaboration and reuse*. , 2020, , .		2
26	Web-based digital twin modeling and remote control of cyber-physical production systems. Robotics and Computer-Integrated Manufacturing, 2020, 64, 101956.	9.9	125
27	A blockchain-driven cyber-credit evaluation approach for establishing reliable cooperation among unauthentic MSMEs in social manufacturing. Industrial Management and Data Systems, 2020, 121, 724-749.	3.7	10
28	A Design for Additive Manufacturing Framework: Product Function Integration and Structure Simplification. IFAC-PapersOnLine, 2020, 53, 77-82.	0.9	7
29	Social Manufacturing: What are its key fundamentals?. IFAC-PapersOnLine, 2020, 53, 65-70.	0.9	8
30	Blockchain Models for Cyber-Credits of Social Manufacturing. Springer Series in Advanced Manufacturing, 2019, , 197-217.	0.5	3
31	Cloud manufacturing: key issues and future perspectives. International Journal of Computer Integrated Manufacturing, 2019, 32, 858-874.	4.6	71
32	Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing. Journal of Cleaner Production, 2019, 234, 767-778.	9.3	157
33	Sustainability Evaluation of Process Planning for Single CNC Machine Tool under the Consideration of Energy-Efficient Control Strategies Using Random Forests. Sustainability, 2019, 11, 3060.	3.2	12
34	Mini-MES: A Microservices-Based Apps System for Data Interconnecting and Production Controlling in Decentralized Manufacturing. Applied Sciences (Switzerland), 2019, 9, 3675.	2.5	6
35	Industrial Dataspace: A Broker to Run Cyber-Physical-Social Production System in Level of Machining Workshops. , 2019, , .		3
36	Manufacturing Knowledge Graph: A Connectivism to Answer Production Problems Query With Knowledge Reuse. IEEE Access, 2019, 7, 101231-101244.	4.2	48

#	Article	IF	CITATIONS
37	An Enhanced DMAIC Method for Feature-Driven Continuous Quality Improvement for Multi-Stage Machining Processes in One-of-a-Kind and Small-Batch Production. IEEE Access, 2019, 7, 32492-32503.	4.2	13
38	Integration of value stream mapping with DMAIC for concurrent Lean-Kaizen: A case study on an air-conditioner assembly line. Advances in Mechanical Engineering, 2019, 11, 168781401982711.	1.6	21
39	Social factory as a production node of social manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 5144-5160.	2.1	5
40	Manufacturing service order allocation in the context of social manufacturing based on Stackelberg game. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 1890-1901.	2.4	6
41	Sensitivity analysis-based process stability evaluation for one-of-a-kind production. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 63-77.	2.1	5
42	Deep neural networks based order completion time prediction by using real-time job shop RFID data. Journal of Intelligent Manufacturing, 2019, 30, 1303-1318.	7.3	57
43	Dynamic scheduling in RFID-driven discrete manufacturing system by using multi-layer network metrics as heuristic information. Journal of Intelligent Manufacturing, 2019, 30, 979-994.	7.3	52
44	Social Manufacturing: Fundamentals and Applications. Springer Series in Advanced Manufacturing, 2019, , .	0.5	4
45	Industrial Cases Concerning Social Manufacturing. Springer Series in Advanced Manufacturing, 2019, , 271-299.	0.5	3
46	Social Manufacturing Paradigm: Concepts, Architecture and Key Enabled Technologies. Springer Series in Advanced Manufacturing, 2019, , 13-50.	0.5	5
47	Socialized Manufacturing Resources and Interconnections. Springer Series in Advanced Manufacturing, 2019, , 51-65.	0.5	3
48	Dynamic scheduling in RFID-driven discrete manufacturing system by using multi-layer network metrics as heuristic information. , 2019, 30, 979.		1
49	Social Factory and Interconnections. Springer Series in Advanced Manufacturing, 2019, , 147-169.	0.5	Ο
50	Social Business Relationship and Organizational Network. Springer Series in Advanced Manufacturing, 2019, , 67-92.	0.5	1
51	Execution of Social Manufacturing. Springer Series in Advanced Manufacturing, 2019, , 245-270.	0.5	1
52	Open Product Design for Social Manufacturing. Springer Series in Advanced Manufacturing, 2019, , 93-116.	0.5	2
53	Configuration of Social Manufacturing System. Springer Series in Advanced Manufacturing, 2019, , 219-243.	0.5	1
54	Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function. Journal of Intelligent Manufacturing, 2018, 29, 51-67.	7.3	49

#	Article	IF	CITATIONS
55	Evaluation across and within collaborative manufacturing networks: a comparison of manufacturers' interactions and attributes. International Journal of Production Research, 2018, 56, 5131-5146.	7.5	30
56	Real-time order scheduling and execution monitoring in public warehouses based on radio frequency identification. International Journal of Advanced Manufacturing Technology, 2018, 95, 2473-2494.	3.0	12
57	Manifold learning based rescheduling decision mechanism for recessive disturbances in RFID-driven job shops. Journal of Intelligent Manufacturing, 2018, 29, 1485-1500.	7.3	44
58	Analysis of personalized production organizing and operating mechanism in a social manufacturing environment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 2670-2676.	2.4	15
59	Incorporating social sensors, cyber-physical system nodes, and smart products for personalized production in a social manufacturing environment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 2323-2338.	2.4	31
60	RFID-enabled social manufacturing system for inter-enterprise monitoring and dispatching of integrated production and transportation tasks. Robotics and Computer-Integrated Manufacturing, 2018, 49, 120-133.	9.9	99
61	Combining granular computing technique with deep learning for service planning under social manufacturing contexts. Knowledge-Based Systems, 2018, 143, 295-306.	7.1	87
62	A resource-oriented middleware in a prototype cyber-physical manufacturing system. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 2339-2352.	2.4	12
63	Production events graphical deduction model enabled real-time production control system for smart job shop. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 2803-2820.	2.1	9
64	An investigation on establishing small- and medium-sized enterprises communities under the environment of social manufacturing. Concurrent Engineering Research and Applications, 2018, 26, 251-264.	3.2	10
65	Environmental and economic sustainability-aware resource service scheduling for industrial product service systems. Journal of Intelligent Manufacturing, 2017, 28, 1303-1316.	7.3	48
66	Demand-based manufacturing service capability estimation of a manufacturing system in a social manufacturing environment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231, 1275-1297.	2.4	14
67	A hybrid-data-on-tag–enabled decentralized control system for flexible smart workpiece manufacturing shop floors. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231, 764-782.	2.1	29
68	Energy-aware integration of process planning and scheduling of advanced machining workshop. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231, 2040-2055.	2.4	15
69	Outsourcer–supplier coordination for parts machining outsourcing under social manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231, 1078-1090.	2.4	33
70	Costing-based coordination between mt-iPSS customer and providers for job shop production using game theory. International Journal of Production Research, 2017, 55, 430-446.	7.5	11
71	Fluctuation evaluation and identification model for small-batch multistage machining processes of complex aircraft parts. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231, 1820-1837.	2.4	6
72	Experimental investigation and multi-objective optimization approach for low-carbon milling operation of aluminum. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231, 2753-2772.	2.1	16

#	Article	IF	CITATIONS
73	RFID-Enabled Physical Object Tracking in Process Flow Based on an Enhanced Graphical Deduction Modeling Method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 3006-3018.	9.3	27
74	Granular computing–based development of service process reference models in social manufacturing contexts. Concurrent Engineering Research and Applications, 2017, 25, 95-107.	3.2	31
75	A distributed configuration scheme for warehouse product service system. Advances in Mechanical Engineering, 2017, 9, 168781401770643.	1.6	11
76	Real-time data-driven monitoring in job-shop floor based on radio frequency identification. International Journal of Advanced Manufacturing Technology, 2017, 92, 2099-2120.	3.0	18
77	An extended machining error propagation network model for small-batch machining process control of aircraft landing gear parts. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231, 1347-1365.	1.3	7
78	Embedded-web-based remote control for RepRap-based open-source 3D printers. , 2017, , .		1
79	Knowledge-based innovative methods for collaborative quality control in equipment outsourcing chain. , 2017, , .		2
80	An integrated pattern using different innovation methods for makers' product development. , 2017, , .		0
81	A framework of credit assurance mechanism for manufacturing services under social manufacturing context. , 2017, , .		25
82	Variation source identification for deep hole boring process of cutting-hard workpiece based on multi-source information fusion using evidence theory. Journal of Intelligent Manufacturing, 2017, 28, 255-270.	7.3	27
83	The configuration of social manufacturing: a social intelligence way toward service-oriented manufacturing. International Journal of Manufacturing Research, 2017, 12, 4.	0.2	19
84	Incorporating Social Sensors and CPS Nodes for Personalized Production under Social Manufacturing Environment. Procedia CIRP, 2016, 56, 366-371.	1.9	18
85	A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm. Knowledge-Based Systems, 2016, 100, 188-199.	7.1	111
86	Sensitivity analysis–based dynamic process capability evaluation for small batch production runs. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230, 1855-1869.	2.4	9
87	The production instruction system for smart job shop. , 2016, , .		4
88	Configuration Design of the Add-on Cyber-physical System with CNC Machine Tools and its Application Perspectives. Procedia CIRP, 2016, 56, 360-365.	1.9	30
89	Social manufacturing as a sustainable paradigm for mass individualization. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230, 1961-1968.	2.4	87
90	Mining and Matching Relationships From Interaction Contexts in a Social Manufacturing Paradigm. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, , 1-13.	9.3	22

#	Article	IF	CITATIONS
91	Social manufacturing: A survey of the state-of-the-art and future challenges. , 2016, , .		17
92	Modeling and analyzing of an enterprise relationship network in the context of social manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230, 752-769.	2.4	47
93	Cutting-tool delivery method in the context of industrial product service systems. Concurrent Engineering Research and Applications, 2016, 24, 178-190.	3.2	11
94	Towards a cyber-physical-social-connected and service-oriented manufacturing paradigm: Social Manufacturing. Manufacturing Letters, 2016, 7, 15-21.	2.2	176
95	Constraint sovling method for hydraulic fracturing product service system configuration. , 2015, , .		О
96	The SOD Modeling Method in CAD System for Hydraulic Fracturing PSS Dseign. , 2015, , .		0
97	The approach of hybrid data on tag in decentralized control system. , 2015, , .		2
98	Low-carbon scheduling and estimating for a flexible job shop based on carbon footprint and carbon efficiency of multi-job processing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 328-342.	2.4	54
99	Implementing of a three-phase integrated decision support model for parts machining outsourcing. International Journal of Production Research, 2014, 52, 3614-3636.	7.5	45
100	Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. Journal of Intelligent Manufacturing, 2014, 25, 521-538.	7.3	46
101	Multi-objective optimization of facility planning for energy intensive companies. Journal of Intelligent Manufacturing, 2013, 24, 1095-1109.	7.3	23
102	Complexity analysis of distributed measuring and sensing network in multistage machining processes. Journal of Intelligent Manufacturing, 2013, 24, 55-69.	7.3	13
103	Multiple-attribute decision-making approach for an energy-efficient facility layout design. International Journal of Advanced Manufacturing Technology, 2013, 66, 795-807.	3.0	28
104	A methodology to estimate power consumption of numerical control machining. , 2013, , .		1
105	Evaluating part machining processes for low-carbon and energy-efficiency contexts on web. , 2013, , .		Ο
106	An RFID-Driven Graphical Formalized Deduction for Describing the Time-Sensitive State and Position Changes of Work-in-Progress Material Flows in a Job-Shop Floor. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135, .	2.2	24
107	Modelling on service capability maturity and resource configuration for public warehouse product service systems. International Journal of Production Research, 2013, 51, 1898-1921.	7.5	34
108	Task-driven e-manufacturing resource configurable model. Journal of Intelligent Manufacturing, 2012, 23, 1681-1694.	7.3	7

#	Article	IF	CITATIONS
109	RFID-enabled real-time manufacturing information tracking infrastructure for extended enterprises. Journal of Intelligent Manufacturing, 2012, 23, 2357-2366.	7.3	52
110	Performance analysis of collaborative design network. , 2012, , .		0
111	A radio frequency identification based optimal material delivery method for digital plant production. International Journal of Computer Integrated Manufacturing, 2011, 24, 493-505.	4.6	10
112	A game-theoretic approach to generating optimal process plans of multiple jobs in networked manufacturing. International Journal of Computer Integrated Manufacturing, 2010, 23, 1118-1132.	4.6	25
113	Using iPSS as a new run-time for service-oriented manufacturing executive systems. , 2009, , .		2
114	Recognizing control chart patterns with neural network and numerical fitting. Journal of Intelligent Manufacturing, 2009, 20, 625-635.	7.3	30
115	Method of change management based on dynamic machining error propagation. Science in China Series D: Earth Sciences, 2009, 52, 1811-1820.	0.9	5
116	A game-theory approach for job scheduling in networked manufacturing. International Journal of Advanced Manufacturing Technology, 2009, 41, 972-985.	3.0	43
117	Product platform design for a product family based on Kansei engineering. Journal of Engineering Design, 2009, 20, 589-607.	2.3	47
118	An e-quality control model for multistage machining processes of workpieces. Science in China Series D: Earth Sciences, 2008, 51, 2178-2194.	0.9	10
119	Study on manufacturing information sharing and tracking for extended enterprises. International Journal of Advanced Manufacturing Technology, 2007, 34, 790-798.	3.0	5
120	3D-feature-based structure design for silicon fabrication of micro devices. Microsystem Technologies, 2007, 13, 701-714.	2.0	10