Veli Ozbolat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3236921/publications.pdf Version: 2024-02-01

		623699	794568
22	1,282	14	19
papers	citations	h-index	g-index
23	23	23	1886
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dual-charge bacterial cellulose as a potential 3D printable material for soft tissue engineering. Composites Part B: Engineering, 2022, 231, 109598.	12.0	19
2	3D coaxial bioprinting: process mechanisms, bioinks and applications. Progress in Biomedical Engineering, 2022, 4, 022003.	4.9	11
3	Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink. Biomedical Materials (Bristol), 2021, 16, 045005.	3.3	18
4	Intraâ€Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction. Advanced Functional Materials, 2021, 31, 2010858.	14.9	37
5	Tissue Engineering: Intraâ€Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction (Adv. Funct. Mater. 29/2021). Advanced Functional Materials, 2021, 31, 2170212.	14.9	1
6	3D Bioprinting for fabrication of tissue models of COVID-19 infection. Essays in Biochemistry, 2021, 65, 503-518.	4.7	11
7	3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. ACS Applied Materials & Interfaces, 2020, 12, 20295-20306.	8.0	65
8	Bioprinting functional tissues. Acta Biomaterialia, 2019, 95, 32-49.	8.3	114
9	Thermally-controlled extrusion-based bioprinting of collagen. Journal of Materials Science: Materials in Medicine, 2019, 30, 55.	3.6	86
10	Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices. Biofabrication, 2019, 11, 034101.	7.1	30
11	3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties. ACS Biomaterials Science and Engineering, 2018, 4, 682-693.	5.2	119
12	Squid Ring Teeth–coated Mesh Improves Abdominal Wall Repair. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e1881.	0.6	8
13	Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnology Advances, 2018, 36, 1481-1504.	11.7	105
14	3D printing of poly(ε-caprolactone)/poly(D,L-lactide- <i>co</i> -glycolide)/hydroxyapatite composite constructs for bone tissue engineering. Journal of Materials Research, 2018, 33, 1972-1986.	2.6	51
15	3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomaterialia, 2017, 57, 26-46.	8.3	229
16	Bone tissue bioprinting for craniofacial reconstruction. Biotechnology and Bioengineering, 2017, 114, 2424-2431.	3.3	40
17	Experimental and Numerical Investigation of a Longfin Inshore Squid's Flow Characteristics. Journal of Applied Fluid Mechanics, 2017, 10, 21-30.	0.2	6
18	Application areas of 3D bioprinting. Drug Discovery Today, 2016, 21, 1257-1271.	6.4	258

Veli Ozbolat

#	Article	IF	CITATIONS
19	Investigation of Heat Transfer Enhancement by using Al2O3/water Nanofluid in Rectangular Corrugated Channel. KahramanmaraÅŸ SütÁ§Ã¼ Űmam Üniversitesi Mühendislik Bilimleri Dergisi, 2016,	19 <mark>,0</mark> 42.	2
20	Effects of rear slant angles on the flow characteristics of Ahmed body. Experimental Thermal and Fluid Science, 2014, 57, 165-176.	2.7	65
21	Numerical Investigations of Heat Transfer Enhancement of Water-Based Al2O3 Nanofluids in a Sinusoidal-Wall Channel. , 2013, , .		5
22	Flow Characteristics and Heat Transfer Enhancement of Sinusoidal Corrugated Channels with Different Configurations. Northwestern Medical Journal, 0, , 93-107.	0.2	0