Pablo Huertas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3236486/publications.pdf

Version: 2024-02-01

52 papers 3,464 citations

257450 24 h-index 206112 48 g-index

60 all docs 60 docs citations

60 times ranked

4269 citing authors

#	Article	IF	CITATIONS
1	TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin. ELife, 2021, 10, .	6.0	13
2	MRGBP, a member of the NuA4 complex, inhibits DNA doubleâ€strand break repair. FEBS Open Bio, 2021, 11, 622-632.	2.3	4
3	Cationic Single-Chained Surfactants with a Functional Group at the End of the Hydrophobic Tail DNA Compacting Efficiency. Pharmaceutics, 2021, 13, 589.	4.5	7
4	The Emerging Role of RNA Modifications in DNA Double-Strand Break Repair. Frontiers in Molecular Biosciences, 2021, 8, 664872.	3 . 5	11
5	Multivalent Calixarene-Based Liposomes as Platforms for Gene and Drug Delivery. Pharmaceutics, 2021, 13, 1250.	4.5	21
6	ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nature Communications, 2021, 12, 5512.	12.8	30
7	CtIP-mediated alternative mRNA splicing fine-tunes the DNA damage response. Rna, 2021, 27, 303-323.	3. 5	6
8	The Effect of Atypical Nucleic Acids Structures in DNA Double Strand Break Repair: A Tale of R-loops and G-Quadruplexes. Frontiers in Genetics, 2021, 12, 742434.	2.3	4
9	Methylation of the central transcriptional regulator KLF4 by PRMT5 is required for DNA end resection and recombination. DNA Repair, 2020, 94, 102902.	2.8	7
10	ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection. PLoS Genetics, 2020, 16, e1008787.	3 . 5	11
11	Metallo-Liposomes of Ruthenium Used as Promising Vectors of Genetic Material. Pharmaceutics, 2020, 12, 482.	4.5	9
12	Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Frontiers in Molecular Biosciences, 2020, 7, 24.	3 . 5	99
13	PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks. Nucleic Acids Research, 2020, 48, 4915-4927.	14.5	19
14	Preparation of a radiobiology beam line at the 18ÂMeV proton cyclotron facility at CNA. Physica Medica, 2020, 74, 19-29.	0.7	8
15	ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection. , 2020, 16, e1008787.		0
16	ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection., 2020, 16, e1008787.		0
17	ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection. , 2020, 16, e1008787.		0
18	ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection. , 2020, 16, e1008787.		0

#	Article	IF	Citations
19	The role of RNA and RNA-related proteins in the regulation of DNA double strand break repair pathway choice. DNA Repair, 2019, 81, 102662.	2.8	23
20	EXOSC10 is required for RPA assembly and controlled DNA end resection at DNA double-strand breaks. Nature Communications, 2019, 10, 2135.	12.8	82
21	Controlling the balance between chromosome break repair pathways. Advances in Protein Chemistry and Structural Biology, 2019, 115, 95-134.	2.3	8
22	UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell, 2019, 176, 505-519.e22.	28.9	100
23	Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1. Nature Communications, 2018, 9, 967.	12.8	33
24	The Ubiquitin E3/E4 Ligase UBE4A Adjusts Protein Ubiquitylation and Accumulation at Sites of DNA Damage, Facilitating Double-Strand Break Repair. Molecular Cell, 2018, 69, 866-878.e7.	9.7	40
25	Exploring the association between polymorphisms at 3'UTR SLC11A1 gene microsatellites and resistance to tuberculosis: A case-control study in Bos taurus dairy cattle. Livestock Science, 2018, 210, 1-7.	1.6	4
26	Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair. Nucleic Acids Research, 2018, 46, 730-747.	14.5	15
27	Multiple roles of the splicing complex SF3B in DNA end resection and homologous recombination. DNA Repair, 2018, 66-67, 11-23.	2.8	23
28	Importance of hydrophobic interactions in the single-chained cationic surfactant-DNA complexation. Journal of Colloid and Interface Science, 2018, 521, 197-205.	9.4	43
29	Single Molecule Analysis of Resection Tracks. Methods in Molecular Biology, 2018, 1672, 147-154.	0.9	16
30	The Helicase PIF1 Facilitates Resection over Sequences Prone to Forming G4 Structures. Cell Reports, 2018, 24, 3262-3273.e4.	6.4	36
31	Chromosome instability: From molecular mechanisms to disease. DNA Repair, 2018, 66-67, 72-75.	2.8	1
32	CtIP-Specific Roles during Cell Reprogramming Have Long-Term Consequences in the Survival and Fitness of Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 432-445.	4.8	7
33	DNA end resection requires constitutive sumoylation of CtIP by CBX4. Nature Communications, 2017, 8, 113.	12.8	38
34	Targeting the centriolar replication factor STIL synergizes with DNA damaging agents for treatment of ovarian cancer. Oncotarget, 2017, 8, 27380-27392.	1.8	13
35	A genome-wide screening uncovers the role of CCAR2 as an antagonist of DNA end resection. Nature Communications, 2016, 7, 12364.	12.8	40
36	The COP9 signalosome is vital for timely repair of DNA double-strand breaks. Nucleic Acids Research, 2015, 43, 4517-4530.	14.5	32

#	Article	IF	CITATIONS
37	Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice. Nucleic Acids Research, 2015, 43, 987-999.	14.5	45
38	Speed matters: How subtle changes in DNA end resection rate affect repair. Molecular and Cellular Oncology, 2015, 2, e982964.	0.7	0
39	BRCA1 Accelerates CtIP-Mediated DNA-End Resection. Cell Reports, 2014, 9, 451-459.	6.4	207
40	Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination. Nucleic Acids Research, 2013, 41, 1669-1683.	14.5	14
41	Prognostic value of Ct <scp>IP</scp> /scp>RBBP8 expression in breast cancer. Cancer Medicine, 2013, 2, 774-783.	2.8	31
42	New Tools to Study DNA Double-Strand Break Repair Pathway Choice. PLoS ONE, 2013, 8, e77206.	2.5	36
43	CtIP Mutations Cause Seckel and Jawad Syndromes. PLoS Genetics, 2011, 7, e1002310.	3.5	109
44	DNA resection in eukaryotes: deciding how to fix the break. Nature Structural and Molecular Biology, 2010, 17, 11-16.	8.2	354
45	Human CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair. Journal of Biological Chemistry, 2009, 284, 9558-9565.	3.4	420
46	Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Molecular Genetics and Genomics, 2008, 279, 123-132.	2.1	32
47	CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature, 2008, 455, 689-692.	27.8	402
48	The THP1-SAC3-SUS1-CDC31 Complex Works in Transcription Elongation-mRNA Export Preventing RNA-mediated Genome Instability. Molecular Biology of the Cell, 2008, 19, 4310-4318.	2.1	128
49	An hpr1 Point Mutation That Impairs Transcription and mRNP Biogenesis without Increasing Recombination. Molecular and Cellular Biology, 2006, 26, 7451-7465.	2.3	36
50	Interdependence between Transcription and mRNP Processing and Export, and Its Impact on Genetic Stability. Molecular Cell, 2005, 18, 711-722.	9.7	105
51	Mitotic recombination in Saccharomyces cerevisiae. Current Genetics, 2003, 42, 185-198.	1.7	96
52	Cotranscriptionally Formed DNA:RNA Hybrids Mediate Transcription Elongation Impairment and Transcription-Associated Recombination. Molecular Cell, 2003, 12, 711-721.	9.7	630