Rajesh S Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3235647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicology and Applied Pharmacology, 2009, 240, 367-376.	1.3	139
2	Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. NeuroToxicology, 2011, 32, 760-768.	1.4	103
3	Lipid Integration in Neurodegeneration: An Overview of Alzheimer's Disease. Molecular Neurobiology, 2014, 50, 168-176.	1.9	93
4	Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats. NeuroToxicology, 2010, 31, 533-539.	1.4	82
5	Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicology and Applied Pharmacology, 2014, 279, 428-440.	1.3	59
6	PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin. NeuroToxicology, 2018, 67, 190-205.	1.4	51
7	Cholinergic Dysfunctions and Enhanced Oxidative Stress in the Neurobehavioral Toxicity of Lambda-Cyhalothrin in Developing Rats. Neurotoxicity Research, 2012, 22, 292-309.	1.3	50
8	Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. International Journal of Developmental Neuroscience, 2014, 34, 60-75.	0.7	41
9	Neurochemical and Behavioral Dysfunctions in Pesticide Exposed Farm Workers: A Clinical Outcome. Indian Journal of Clinical Biochemistry, 2018, 33, 372-381.	0.9	39
10	Involvement of dopaminergic and serotonergic systems in the neurobehavioral toxicity of lambda-cyhalothrin in developing rats. Toxicology Letters, 2012, 211, 1-9.	0.4	31
11	Protective Effect of Curcumin by Modulating BDNF/DARPP32/CREB in Arsenic-Induced Alterations in Dopaminergic Signaling in Rat Corpus Striatum. Molecular Neurobiology, 2018, 55, 445-461.	1.9	28
12	Protective effect of Emblica-officinalis in arsenic induced biochemical alteration and inflammation in mice. SpringerPlus, 2015, 4, 438.	1.2	26
13	Neuroprotective effects of mitochondriaâ€ŧargeted curcumin against rotenoneâ€induced oxidative damage in cerebellum of mice. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22416.	1.4	25
14	Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats. Toxicology and Industrial Health, 2016, 32, 422-436.	0.6	23
15	Efficacy of Natural Compounds in Neurodegenerative Disorders. Advances in Neurobiology, 2016, 12, 107-123.	1.3	21
16	Identification of markers of depression and neurotoxicity in pesticide exposed agriculture workers. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22477.	1.4	18
17	Cholinesterase inhibition and its association with hematological, biochemical and oxidative stress markers in chronic pesticide exposed agriculture workers. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22367.	1.4	16
18	Synthesis, characterization and efficacy of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 557-570.	0.9	15

Rajesh S Yadav

#	Article	IF	CITATIONS
19	Efficacy of crude extract of Emblica officinalis (amla) in arsenic-induced oxidative damage and apoptosis in splenocytes of mice. Toxicology International, 2014, 21, 8.	0.1	14
20	Omega-3 fatty acid attenuates oxidative stress in cerebral cortex, cerebellum, and hippocampus tissue and improves neurobehavioral activity in chronic lead-induced neurotoxicity. Nutritional Neuroscience, 2019, 22, 83-97.	1.5	12
21	Impaired cholinergic mechanisms following exposure to monocrotophos in young rats. Human and Experimental Toxicology, 2012, 31, 606-616.	1.1	9
22	Neuroprotective effect of quercetin against rotenoneâ€induced neuroinflammation and alterations in mice behavior. Journal of Biochemical and Molecular Toxicology, 2022, 36, .	1.4	7
23	Non-permitted food colorants induced neurotoxicity in cerebellum of rat brain. Drug and Chemical Toxicology, 2022, 45, 2852-2859.	1.2	3
24	Effect of Repeated Exposure to Lambda-Cyhalothrin and Immobilization or Forced Swim Stress on Oxidative Stress in Rat Brain. Toxicology International, 2016, 23, 18.	0.1	0