
Vincenzo Capasso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3235475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prevention and control of OQDS (olive quick decline syndrome) outbreaks caused by Xylella fastidiosa Journal of Theoretical Biology, 2022, 542, 111118.	0.8	2
2	Regional Control for Spatially Structured Mosquito Borne Epidemics. Vietnam Journal of Mathematics, 2021, 49, 21-35.	0.4	2
3	Controlling the Spatial Spread of a Xylella Epidemic. Bulletin of Mathematical Biology, 2021, 83, 32.	0.9	6
4	Regional Control for Spatially Structured Mosquito Borne Epidemics. Vietnam Journal of Mathematics, 2021, 49, 189-206.	0.4	1
5	A mathematical model for Xylella fastidiosa epidemics in the Mediterranean regions. Promoting good agronomic practices for their effective control Ecological Modelling, 2020, 432, 109204.	1.2	17
6	A hybrid stochastic model of retinal angiogenesis. Mathematical Methods in the Applied Sciences, 2020, 43, 10578-10592.	1.2	3
7	A Shape Optimization Problem Concerning the Regional Control of a Class of Spatially Structured Epidemics: Sufficiency Conditions. SEMA SIMAI Springer Series, 2020, , 165-183.	0.4	0
8	Regional control for a spatially structured malaria model. Mathematical Methods in the Applied Sciences, 2019, 42, 2909-2933.	1.2	8
9	Controlling an alien predator population by regional controls. Nonlinear Analysis: Real World Applications, 2019, 46, 82-97.	0.9	4
10	A mathematical model for malaria transmission with asymptomatic carriers and two age groups in the human population. Mathematical Biosciences, 2018, 300, 87-101.	0.9	17
11	Introduction and Motivations. SpringerBriefs in Mathematics, 2018, , 1-2.	0.2	0
12	Some Regional Control Problems for Population Dynamics. Lecture Notes in Economics and Mathematical Systems, 2018, , 419-439.	0.3	0
13	Preface: IWR Special Issue on Scientific Computing. Vietnam Journal of Mathematics, 2017, 45, 1-4.	0.4	1
14	Optimizing Environmental Taxation on Physical Capital for a Spatially Structured Economic Growth Model Including Pollution Diffusion. Vietnam Journal of Mathematics, 2017, 45, 199-206.	0.4	3
15	On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences and Engineering, 2017, 14, 45-66.	1.0	15
16	The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally) . Mathematical Biosciences and Engineering, 2017, 15, 1-20.	1.0	1
17	On stochastic distributions and currents. Mathematics and Mechanics of Complex Systems, 2016, 4, 373-406.	0.5	6
18	Regional control in optimal harvesting of population dynamics. Nonlinear Analysis: Theory, Methods & Applications, 2016, 147, 191-212.	0.6	9

VINCENZO CAPASSO

#	Article	IF	CITATIONS
19	An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology, 2015, , .	0.4	11
20	Dynamics and optimal control in a spatially structured economic growth model with pollution diffusion and environmental taxation. Applied Mathematics Letters, 2015, 42, 36-40.	1.5	15
21	Applications to Biology and Medicine. Modeling and Simulation in Science, Engineering and Technology, 2015, , 349-400.	0.4	3
22	Inverse problems in geographical economics: parameter identification in the spatial Solow model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130402.	1.6	3
23	Randomness and Geometric Structures in Biology. Springer Proceedings in Mathematics, 2013, , 283-289.	0.5	3
24	Randomness in self-organized phenomena. A case study: Retinal angiogenesis. BioSystems, 2013, 112, 292-297.	0.9	8
25	Optimal control and long-run dynamics for a spatial economic growth model with physical capital accumulation and pollution diffusion. Applied Mathematics Letters, 2013, 26, 908-912.	1.5	21
26	A Multiscale Approach Leading to Hybrid Mathematical Models for Angiogenesis: The Role of Randomness. Lecture Notes on Mathematical Modelling in the Life Sciences, 2013, , 87-115.	0.1	1
27	Stabilization of a reaction–diffusion system modelling a class of spatially structured epidemic systems via feedback control. Nonlinear Analysis: Real World Applications, 2012, 13, 725-735.	0.9	19
28	Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 1673-1684.	0.5	6
29	An Introduction to Optimal Control Problems in Life Sciences and Economics. Modeling and Simulation in Science, Engineering and Technology, 2011, , .	0.4	65
30	On the stabilization of reaction–diffusion systems modeling a class of manâ€environment epidemics: A review. Mathematical Methods in the Applied Sciences, 2010, 33, 1235-1244.	1.2	11
31	On the Stochastic Modelling of Interacting Populations. A Multiscale Approach Leading to Hybrid Models. Computational Methods in Applied Sciences (Springer), 2010, , 59-80.	0.1	Ο
32	Asymptotic Behavior of a System of Stochastic Particles Subject to Nonlocal Interactions. Stochastic Analysis and Applications, 2009, 27, 574-603.	0.9	28
33	Stochastic modelling of tumour-induced angiogenesis. Journal of Mathematical Biology, 2009, 58, 219-233.	0.8	68
34	Multiple scales and geometric structures: additional sources of randomness. Journal of Mathematical Biology, 2009, 59, 143-146.	0.8	1
35	A stabilization strategy for a reaction–diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally). Nonlinear Analysis: Real World Applications, 2009, 10, 2026-2035.	0.9	24
36	Stochastic geometric models, and related statistical issues in tumour-induced angiogenesis. Mathematical Biosciences, 2008, 214, 20-31.	0.9	15

VINCENZO CAPASSO

#	Article	IF	CITATIONS
37	On the Geometric Densities of Random Closed Sets. Stochastic Analysis and Applications, 2008, 26, 784-808.	0.9	23
38	On the Mean Geometric Densities of Random Closed Sets, and Their Estimation: Application to the Estimation of the Mean Density of Inhomogeneous Fibre Processes. Mathematics in Industry, 2008, , 3-34.	0.1	1
39	On an aggregation model with long and short range interactions. Nonlinear Analysis: Real World Applications, 2007, 8, 939-958.	0.9	114
40	ON MEAN DENSITIES OF INHOMOGENEOUS GEOMETRIC PROCESSES ARISING IN MATERIAL SCIENCE AND MEDICINE. Image Analysis and Stereology, 2007, 26, 23.	0.4	21
41	Mesoscale Averaging of Nucleation and Growth Models. Multiscale Modeling and Simulation, 2006, 5, 564-592.	0.6	22
42	On the Continuity and Absolute Continuity of Random Closed Sets. Stochastic Analysis and Applications, 2006, 24, 381-397.	0.9	20
43	An interacting particle system modelling aggregation behavior: from individuals to populations. Journal of Mathematical Biology, 2005, 50, 49-66.	0.8	158
44	Survival Functions and Contact Distribution Functions for Inhomogeneous, Stochastic Geometric Marked Point Processes. Stochastic Analysis and Applications, 2005, 23, 79-96.	0.9	13
45	Notes and Comments: Profitability in a multiple strategy market. Decisions in Economics and Finance, 2003, 26, 145-152.	1.1	1
46	Modelling multi-dimensional crystallization of polymers in interaction with heat transfer. Nonlinear Analysis: Real World Applications, 2002, 3, 139-160.	0.9	34
47	A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic systems. Nonlinear Analysis: Real World Applications, 2002, 3, 453-464.	0.9	34
48	Modeling the aggregative behavior of ants of the species Polyergus rufescens. Nonlinear Analysis: Real World Applications, 2000, 1, 163-176.	0.9	73
49	Characterization of the spatial poisson process by stopping lines. Stochastic and Stochastics Reports, 1999, 66, 221-231.	0.6	1
50	Asymptotic properties of the maximum likelihood estimators of parameters of a spatial counting process modelling crystallization of polymers. Stochastic Analysis and Applications, 1995, 13, 279-294.	0.9	5
51	Controlling the spread of a class of epidemics. Applied Mathematics and Optimization, 1989, 20, 297-317.	0.8	19
52	Clobal Solution for a Diffusive Nonlinear Deterministic Epidemic Model. SIAM Journal on Applied Mathematics, 1978, 35, 274-284.	0.8	70
53	A generalization of the Kermack-McKendrick deterministic epidemic model. Mathematical Biosciences, 1978, 42, 43-61.	0.9	894