
Joaquim Ballabrera Poy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3234976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data assimilation in a system with two scales—combining two initialization techniques. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 61, 539.	1.7	22
2	On the Influence of the Current Feedback to the Atmosphere on the Western Mediterranean Sea Dynamics. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016664.	2.6	4
3	Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renewable and Sustainable Energy Reviews, 2020, 132, 110105.	16.4	29
4	Sustainable European Transport System in a 100% Renewable Economy. Sustainability, 2020, 12, 5091.	3.2	21
5	Synergy between Ocean Variables: Remotely Sensed Surface Temperature and Chlorophyll Concentration Coherence. Remote Sensing, 2020, 12, 1153.	4.0	7
6	Impact of Aquarius and SMAP Satellite Sea Surface Salinity Observations on Coupled El Niño/Southern Oscillation Forecasts. Journal of Geophysical Research: Oceans, 2019, 124, 4546-4556.	2.6	11
7	Empirical Characterization of the SMOS Brightness Temperature Bias and Uncertainty for Improving Sea Surface Salinity Retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2486-2503.	4.9	7
8	Dominant Features of Global Surface Soil Moisture Variability Observed by the SMOS Satellite. Remote Sensing, 2019, 11, 95.	4.0	28
9	Renewable transitions and the net energy from oil liquids: A scenarios study. Renewable Energy, 2018, 116, 258-271.	8.9	44
10	Seven Years of SMOS Sea Surface Salinity at High Latitudes: Variability in Arctic and Sub-Arctic Regions. Remote Sensing, 2018, 10, 1772.	4.0	47
11	Empirical Characterization of The Smos Brightness Temperature Bias and Uncertainty for Improving Sea Surface Salinity. , 2018, , .		0
12	Error Characterization of Sea Surface Salinity Products Using Triple Collocation Analysis. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 5160-5168.	6.3	20
13	Singularity Power Spectra: A Method to Assess Geophysical Consistency of Gridded Products—Application to Sea-Surface Salinity Remote Sensing Maps. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 5525-5536.	6.3	7
14	Debiased non-Bayesian retrieval: A novel approach to SMOS Sea Surface Salinity. Remote Sensing of Environment, 2017, 193, 103-126.	11.0	54
15	Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated. Nonlinear Processes in Geophysics, 2017, 24, 613-643.	1.3	33
16	Retrieval of eddy dynamics from SMOS sea surface salinity measurements in the Algerian Basin (Mediterranean Sea). Geophysical Research Letters, 2016, 43, 6427-6434.	4.0	23
17	Improving time and space resolution of SMOS salinity maps using multifractal fusion. Remote Sensing of Environment, 2016, 180, 246-263.	11.0	36

18 New SMOS salinity products at CP34-BEC in Barcelona. , 2016, , .

#	Article	IF	CITATIONS
19	On the enhancement of the SMOS salinity products at CP34-BEC: From L0 to L4. , 2016, , .		0
20	Enhancing SMOS brightness temperatures over the ocean using the nodal sampling image reconstruction technique. Remote Sensing of Environment, 2016, 180, 205-220.	11.0	16
21	The role of ocean velocity in chlorophyll variability. A modelling study in the Alboran Sea. Scientia Marina, 2016, 80, 249-256.	0.6	8
22	2000 days of SMOS at the Barcelona Expert Centre: a tribute to the work of Jordi Font. Scientia Marina, 2016, 80, 173-193.	0.6	3
23	From field experiments to salinity products: a tribute to the contributions of Jordi Font to the SMOS mission. Scientia Marina, 2016, 80, 159-172.	0.6	1
24	Detecting the surface salinity signature of <scp>G</scp> ulf <scp>S</scp> tream cold ore rings in <scp>A</scp> quarius synergistic products. Journal of Geophysical Research: Oceans, 2015, 120, 859-874.	2.6	20
25	Energy and mineral peaks, and a future steady state economy. Technological Forecasting and Social Change, 2015, 90, 587-598.	11.6	27
26	New blending algorithm to synergize ocean variables: The case of SMOS sea surface salinity maps. Remote Sensing of Environment, 2014, 146, 172-187.	11.0	33
27	On the potential of data assimilation to generate SMOS-Level 4 maps of sea surface salinity. Remote Sensing of Environment, 2014, 146, 188-200.	11.0	14
28	Impact of Aquarius sea surface salinity observations on coupled forecasts for the tropical Indoâ€Pacific Ocean. Journal of Geophysical Research: Oceans, 2014, 119, 4045-4067.	2.6	31
29	Analyzing the 2010–2011 La Niña signature in the tropical Pacific sea surface salinity using in situ data, SMOS observations, and a numerical simulation. Journal of Geophysical Research: Oceans, 2014, 119, 3855-3867.	2.6	40
30	SMOS first data analysis for sea surface salinity determination. International Journal of Remote Sensing, 2013, 34, 3654-3670.	2.9	81
31	Rain Effects on ASCAT-Retrieved Winds: Toward an Improved Quality Control. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2495-2506.	6.3	78
32	Review of the CALIMAS Team Contributions to European Space Agency's Soil Moisture and Ocean Salinity Mission Calibration and Validation. Remote Sensing, 2012, 4, 1272-1309.	4.0	11
33	A global renewable mix with proven technologies and common materials. Energy Policy, 2012, 41, 561-574.	8.8	86
34	A new space technology for ocean observation: the SMOS mission. Scientia Marina, 2012, 76, 249-259.	0.6	13
35	An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	551
36	Impact of sea surface salinity assimilation on coupled forecasts in the tropical Pacific. Journal of Geophysical Research, 2011, 116, .	3.3	43

#	Article	IF	CITATIONS
37	Model initialization in a tidally energetic regime: A dynamically adjusted objective analysis. Ocean Modelling, 2011, 36, 219-227.	2.4	0
38	Linear and non-linear T–S models for the eastern North Atlantic from Argo data: Role of surface salinity observations. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 1605-1614.	1.4	27
39	Salinity model errors induced by wind stress uncertainties in the Macaronesian region. Ocean Modelling, 2009, 29, 213-221.	2.4	4
40	Decadal timeâ€series of SeaWiFS retrieved CDOM absorption and estimated CO ₂ photoproduction on the continental shelf of the eastern United States. Geophysical Research Letters, 2009, 36, .	4.0	17
41	Role of ocean biologyâ€induced climate feedback in the modulation of El Niñoâ€Southern Oscillation. Geophysical Research Letters, 2009, 36, .	4.0	31
42	Tracking oceanic currents by singularity analysis of Microwave Sea Surface Temperature images. Remote Sensing of Environment, 2008, 112, 2246-2260.	11.0	47
43	Surface salinity response to changes in the model parameters and forcings in a climatological simulation of the eastern North-Atlantic Ocean. Ocean Modelling, 2008, 23, 21-32.	2.4	13
44	Microwave Aperture Synthesis Radiometry: Paving the Path for Sea Surface Salinity Measurement from Space. , 2008, , 223-238.		11
45	Coupled Ocean–Atmosphere Response to Seasonal Modulation of Ocean Color: Impact on Interannual Climate Simulations in the Tropical Pacific. Journal of Climate, 2007, 20, 353-374.	3.2	46
46	An Observing System Simulation Experiment for an Optimal Moored Instrument Array in the Tropical Indian Ocean. Journal of Climate, 2007, 20, 3284-3299.	3.2	37
47	Comparison between 1997 and 2002 El Niño events: Role of initial state versus forcing. Journal of Geophysical Research, 2007, 112, .	3.3	12
48	Role of the initial ocean state for the 2006 El Ni $ ilde{A}\pm$ o. Geophysical Research Letters, 2007, 34, .	4.0	4
49	4-D-Var or ensemble Kalman filter?. Tellus, Series A: Dynamic Meteorology and Oceanography, 2007, 59, 758-773.	1.7	198
50	Response to the discussion on "4-D-Var or EnKF?―by Nils Gustafsson. Tellus, Series A: Dynamic Meteorology and Oceanography, 2007, 59, 778-780.	1.7	21
51	An empirical parameterization for the salinity of subsurface water entrained into the ocean mixed layer (Se) in the tropical Pacific. Geophysical Research Letters, 2006, 33, .	4.0	6
52	Tropical influence on Euro-Asian autumn rainfall variability. Climate Dynamics, 2005, 24, 511-521.	3.8	61
53	Decadal variability of shallow cells and equatorial sea surface temperature in a numerical model of the Atlantic. Journal of Geophysical Research, 2005, 110, .	3.3	7
54	A new approach to improved SST anomaly simulations using altimeter data: Parameterizing entrainment temperature from sea level. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	9

#	Article	IF	CITATIONS
55	A ribbon of dark water: phytoplankton blooms in the meanders of the Pacific North Equatorial Countercurrent. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51, 209-228.	1.4	29
56	Signal-to-noise ratios of observed monthly tropical ocean color. Geophysical Research Letters, 2003, 30, .	4.0	19
57	On the potential impact of sea surface salinity observations on ENSO predictions. Journal of Geophysical Research, 2002, 107, SRF 8-1-SRF 8-11.	3.3	49
58	Relationship between zonal and meridional modes in the tropical Atlantic. Geophysical Research Letters, 2001, 28, 4463-4466.	4.0	44
59	Application of a Reduced-Order Kalman Filter to Initialize a Coupled Atmosphere–Ocean Model: Impact on the Prediction of El Niño. Journal of Climate, 2001, 14, 1720-1737.	3.2	44
60	Dynamical evolution of the error statistics with the SEEK filter to assimilate altimetric data in eddy-resolving ocean models. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 233-253.	2.7	31
61	Assimilation of altimetric data in the mid-latitude oceans using the Singular Evolutive Extended Kalman filter with an eddy-resolving, primitive equation model. Journal of Marine Systems, 1999, 22, 269-294	2.1	74