Andrew Danos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3234802/publications.pdf

Version: 2024-02-01

37 papers	1,012	19	31
	citations	h-index	g-index
39	39	39	850 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Molecular Design Strategies for Color Tuning of Blue TADF Emitters. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27125-27133.	8.0	97
2	Hot Vibrational States in a High-Performance Multiple Resonance Emitter and the Effect of Excimer Quenching on Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8643-8655.	8.0	94
3	Less Is More: Dilution Enhances Optical and Electrical Performance of a TADF Exciplex. Journal of Physical Chemistry Letters, 2019, 10, 793-798.	4.6	84
4	Persistent Dimer Emission in Thermally Activated Delayed Fluorescence Materials. Journal of Physical Chemistry C, 2019, 123, 11109-11117.	3.1	79
5	Balancing charge-transfer strength and triplet states for deep-blue thermally activated delayed fluorescence with an unconventional electron rich dibenzothiophene acceptor. Journal of Materials Chemistry C, 2019, 7, 13224-13234.	5.5	52
6	Diindolocarbazole – achieving multiresonant thermally activated delayed fluorescence without the need for acceptor units. Materials Horizons, 2022, 9, 1068-1080.	12.2	48
7	Vibrational Damping Reveals Vibronic Coupling in Thermally Activated Delayed Fluorescence Materials. Chemistry of Materials, 2021, 33, 3066-3080.	6.7	47
8	Kinetic Modeling of Transient Photoluminescence from Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry C, 2018, 122, 29173-29179.	3.1	45
9	Revealing resonance effects and intramolecular dipole interactions in the positional isomers of benzonitrile-core thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2019, 7, 9184-9194.	5.5	42
10	Exploiting trifluoromethyl substituents for tuning orbital character of singlet and triplet states to increase the rate of thermally activated delayed fluorescence. Materials Chemistry Frontiers, 2020, 4, 3602-3615.	5.9	35
11	Are the rates of dexter transfer in TADF hyperfluorescence systems optically accessible?. Materials Horizons, 2021, 8, 1805-1815.	12.2	34
12	Electroabsorption Spectroscopy as a Tool for Probing Charge Transfer and State Mixing in Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry Letters, 2019, 10, 3205-3211.	4.6	29
13	Conformational Dependence of Triplet Energies in Rotationally Hindered N―and Sâ€Heterocyclic Dimers: New Design and Measurement Rules for High Triplet Energy OLED Host Materials. Chemistry - A European Journal, 2021, 27, 6545-6556.	3.3	29
14	Excited State Dynamics of Thermally Activated Delayed Fluorescence from an Excited State Intramolecular Proton Transfer System. Journal of Physical Chemistry Letters, 2020, 11, 3305-3312.	4.6	28
15	Emission and Absorption Tuning in TADF B,Nâ€Doped Heptacenes: Toward Idealâ€Blue Hyperfluorescent OLEDs. Advanced Optical Materials, 2022, 10, .	7.3	28
16	Energy transfer in pendant perylene diimide copolymers. Journal of Materials Chemistry C, 2016, 4, 8270-8275.	5.5	27
17	The Critical Role of nï€* States in the Photophysics and Thermally Activated Delayed Fluorescence of Spiro Acridine-Anthracenone. Journal of Physical Chemistry Letters, 2021, 12, 1490-1500.	4.6	26
18	Suppressing dimer formation by increasing conformational freedom in multi-carbazole thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2021, 9, 189-198.	5.5	25

#	Article	lF	CITATIONS
19	Deuteration of Perylene Enhances Photochemical Upconversion Efficiency. Journal of Physical Chemistry Letters, 2015, 6, 3061-3066.	4.6	21
20	Identifying the Factors That Lead to PLQY Enhancement in Diluted TADF Exciplexes Based on Carbazole Donors. Journal of Physical Chemistry C, 2019, 123, 17318-17324.	3.1	17
21	Silylethynyl Substitution for Preventing Aggregate Formation in Perylene Diimides. Journal of Physical Chemistry C, 2021, 125, 13041-13049.	3.1	15
22	Navigating CIE Space for Efficient TADF Downconversion WOLEDs. Dyes and Pigments, 2020, 183, 108707.	3.7	13
23	Spiro donor–acceptor TADF emitters: naked TADF free from inhomogeneity caused by donor acceptor bridge bond disorder. Fast rISC and invariant photophysics in solid state hosts. Journal of Materials Chemistry C, 2022, 10, 1313-1325.	5 . 5	13
24	Extended Conjugation Attenuates the Quenching of Aggregationâ€Induced Emitters by Photocyclization Pathways. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
25	Benzo[1,2-b:4,5-b']dithiophene as a weak donor component for push-pull materials displaying thermally activated delayed fluorescence or room temperature phosphorescence. Dyes and Pigments, 2021, 186, 109022.	3.7	11
26	Not the sum of their parts: understanding multi-donor interactions in symmetric and asymmetric TADF emitters. Journal of Materials Chemistry C, 2022, 10, 4737-4747.	5.5	11
27	Modulation of charge transfer by <i>N</i> -alkylation to control photoluminescence energy and quantum yield. Chemical Science, 2020, 11, 6990-6995.	7.4	9
28	Bridge control of photophysical properties in benzothiazole-phenoxazine emitters – from thermally activated delayed fluorescence to room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 4775-4784.	5 . 5	9
29	Effects of asymmetric acceptor and donor positioning in deep blue pyridyl-sulfonyl based TADF emitters. Dyes and Pigments, 2021, 194, 109579.	3.7	8
30	Difluorodithieno[3,2-a:2′,3′-c]phenazine as a strong acceptor for materials displaying thermally activated delayed fluorescence or room temperature phosphorescence. Dyes and Pigments, 2021, 190, 109301.	3.7	7
31	Determining non-radiative decay rates in TADF compounds using coupled transient and steady state optical data. Journal of Materials Chemistry C, 2022, 10, 4878-4885.	5 . 5	7
32	Novel Dâ€"A chromophores with condensed 1,2,4-triazine system simultaneously display thermally activated delayed fluorescence and crystallization-induced phosphorescence. Physical Chemistry Chemical Physics, 2022, 24, 17770-17781.	2.8	6
33	Recombination Dynamics in Thin-film Photovoltaic Materials via Time-resolved Microwave Conductivity. Journal of Visualized Experiments, 2017, , .	0.3	2
34	Effects of donor position and multiple charge transfer pathways in asymmetric pyridyl-sulfonyl TADF emitters. Materials Today Communications, 2022, 31, 103550.	1.9	2
35	Extended Conjugation Attenuates the Quenching of Aggregationâ€Induced Emitters by Photocyclization Pathways. Angewandte Chemie, 0, , .	2.0	0
36	The Effect of Imide Substituents on the Excited State Properties of Perylene Diimide Derivatives. , 0, , .		0

Andrew Danos

#	Article	IF	CITATIONS
37	Pâ€129: Estimating Nonâ€radiative Decay Rates in TADF Emitters Using Steadyâ€State and Transient Optical Data. Digest of Technical Papers SID International Symposium, 2022, 53, 1495-1498.	0.3	O