Mathieu Laplante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3234711/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	mTOR Signaling in Growth Control and Disease. Cell, 2012, 149, 274-293.	13.5	7,066
2	mTOR signaling at a glance. Journal of Cell Science, 2009, 122, 3589-3594.	1.2	1,940
3	Obesity-associated improvements in metabolic profile through expansion of adipose tissue. Journal of Clinical Investigation, 2007, 117, 2621-2637.	3.9	1,104
4	DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival. Cell, 2009, 137, 873-886.	13.5	1,055
5	mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature, 2010, 468, 1100-1104.	13.7	532
6	An Emerging Role of mTOR in Lipid Biosynthesis. Current Biology, 2009, 19, R1046-R1052.	1.8	529
7	Regulation of mTORC1 and its impact on gene expression at a glance. Journal of Cell Science, 2013, 126, 1713-9.	1.2	509
8	The Roles of mTOR Complexes in Lipid Metabolism. Annual Review of Nutrition, 2015, 35, 321-348.	4.3	245
9	mTOR Signaling. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011593-a011593.	2.3	219
10	Connecting mTORC1 signaling to SREBP-1 activation. Current Opinion in Lipidology, 2012, 23, 226-234.	1.2	207
11	<i>In vivo</i> measurement of energy substrate contribution to coldâ€induced brown adipose tissue thermogenesis. FASEB Journal, 2015, 29, 2046-2058.	0.2	183
12	A Mitofusin-2–dependent inactivating cleavage of Opa1 links changes in mitochondria <i>cristae</i> and ER contacts in the postprandial liver. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16017-16022.	3.3	148
13	PPAR-Â Activation Mediates Adipose Depot-Specific Effects on Gene Expression and Lipoprotein Lipase Activity: Mechanisms for Modulation of Postprandial Lipemia and Differential Adipose Accretion. Diabetes, 2003, 52, 291-299.	0.3	143
14	mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3281-3282.	3.3	117
15	Mechanisms of the Depot Specificity of Peroxisome Proliferator-Activated Receptor Action on Adipose Tissue Metabolism. Diabetes, 2006, 55, 2771-2778.	0.3	113
16	A comparative perspective on lipid storage in animals. Journal of Cell Science, 2013, 126, 1541-1552.	1.2	112
17	DEPTOR Cell-Autonomously Promotes Adipogenesis, and Its Expression Is Associated with Obesity. Cell Metabolism, 2012, 16, 202-212.	7.2	99
18	Myeloid-Specific Rictor Deletion Induces M1 Macrophage Polarization and Potentiates In Vivo Pro-Inflammatory Response to Lipopolysaccharide. PLoS ONE, 2014, 9, e95432.	1.1	94

MATHIEU LAPLANTE

#	Article	IF	CITATIONS
19	Metabolic activity of brown, "beige,―and white adipose tissues in response to chronic adrenergic stimulation in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E260-E268.	1.8	92
20	PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4285-4290.	3.3	77
21	Depot-specific effects of the PPARÎ ³ agonist rosiglitazone on adipose tissue glucose uptake and metabolism. Journal of Lipid Research, 2009, 50, 1185-1194.	2.0	73
22	Interrelationships between ghrelin, insulin and glucose homeostasis: Physiological relevance. World Journal of Diabetes, 2014, 5, 328.	1.3	64
23	mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold. Scientific Reports, 2016, 6, 37223.	1.6	64
24	DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiological Reviews, 2018, 98, 1765-1803.	13.1	64
25	Obese Mice Lacking Inducible Nitric Oxide Synthase Are Sensitized to the Metabolic Actions of Peroxisome Proliferator–Activated Receptor-γ Agonism. Diabetes, 2008, 57, 1999-2011.	0.3	57
26	The PPARÎ ³ agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1327-R1335.	0.9	54
27	Versatile and robust genome editing with <i>Streptococcus thermophilus</i> CRISPR1-Cas9. Genome Research, 2020, 30, 107-117.	2.4	51
28	The hepatokine Tsukushi is released in response to NAFLD and impacts cholesterol homeostasis. JCI Insight, 2019, 4, .	2.3	39
29	Tissue-specific postprandial clearance is the major determinant of PPARγ-induced triglyceride lowering in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R57-R66.	0.9	37
30	Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Molecular Metabolism, 2016, 5, 102-112.	3.0	33
31	Rosiglitazone-induced heart remodelling is associated with enhanced turnover of myofibrillar protein and mTOR activation. Journal of Molecular and Cellular Cardiology, 2009, 47, 85-95.	0.9	32
32	Loss of hepatic DEPTOR alters the metabolic transition to fasting. Molecular Metabolism, 2017, 6, 447-458.	3.0	32
33	Involvement of adipose tissues in the early hypolipidemic action of PPARÎ ³ agonism in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1408-R1417.	0.9	29
34	Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. ELife, 2016, 5, .	2.8	25
35	The Hepatokine TSK does not affect brown fat thermogenic capacity, body weight gain, and glucose homeostasis. Molecular Metabolism, 2019, 30, 184-191.	3.0	19
36	Amplification of Adipogenic Commitment by VSTM2A. Cell Reports, 2017, 18, 93-106.	2.9	18

MATHIEU LAPLANTE

#	Article	IF	CITATIONS
37	Cytokines promote lipolysis in 3T3-L1 adipocytes through induction of NADPH oxidase 3 expression and superoxide production. Journal of Lipid Research, 2018, 59, 2321-2328.	2.0	18
38	Metabolic responses to intermittent hypoxia are regulated by sex and estradiol in mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E316-E325.	1.8	18
39	Preliminary report: pharmacologic 11β-hydroxysteroid dehydrogenase type 1 inhibition increases hepatic fat oxidation in vivo and expression of related genes in rats fed an obesogenic diet. Metabolism: Clinical and Experimental, 2010, 59, 114-117.	1.5	15
40	DEP domain ontaining mTORâ€interacting protein in the rat brain: Distribution of expression and potential implication. Journal of Comparative Neurology, 2015, 523, 93-107.	0.9	15
41	The transcription factor hepatocyte nuclear factor 4A acts in the intestine to promote white adipose tissue energy storage. Nature Communications, 2022, 13, 224.	5.8	15
42	DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1322-R1331.	0.9	13
43	Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling. Nature Communications, 2021, 12, 3660.	5.8	13
44	DEPTOR modulates activation responses in CD4+ T cells and enhances immunoregulation following transplantation. American Journal of Transplantation, 2019, 19, 77-88.	2.6	12
45	Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E592-E605.	1.8	12
46	Insulin stimulates IGFBP-2 expression in 3T3-L1 adipocytes through the PI3K/mTOR pathway. Molecular and Cellular Endocrinology, 2012, 358, 63-68.	1.6	11
47	ZNF768 links oncogenic RAS to cellular senescence. Nature Communications, 2021, 12, 4841.	5.8	11
48	Lung cancer susceptibility genetic variants modulate HOXB2 expression in the lung. International Journal of Developmental Biology, 2018, 62, 857-864.	0.3	8
49	Control of adipogenic commitment by a STAT3-VSTM2A axis. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E259-E269.	1.8	8
50	ZNF768 Expression Associates with High Proliferative Clinicopathological Features in Lung Adenocarcinoma. Cancers, 2021, 13, 4136.	1.7	8
51	A Phosphorylatable Sphingosine Analog Induces Airway Smooth Muscle Cytostasis and Reverses Airway Hyperresponsiveness in Experimental Asthma. Frontiers in Pharmacology, 2017, 8, 78.	1.6	7
52	HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide. Scientific Reports, 2019, 9, 4200.	1.6	7
53	Critical importance of dietary methionine and choline in the maintenance of lung homeostasis during normal and cigarette smoke exposure conditions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L391-L402.	1.3	4
54	Glycerol contained in vaping liquids affects the liver and aspects of energy homeostasis in a sexâ€dependent manner. Physiological Reports, 2022, 10, e15146.	0.7	4

#	Article	IF	CITATIONS
55	ZNF768: controlling cellular senescence and proliferation with ten fingers. Molecular and Cellular Oncology, 2021, 8, 1985930.	0.3	2