
Xiaoqing Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3234121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step. Chinese Journal of Chemical Engineering, 2022, 43, 230-239.	1.7	4
2	Global reprogramming of xylose metabolism in Saccharomyces cerevisiae efficiently produces ethanol from lignocellulose hydrolysates. Industrial Crops and Products, 2022, 179, 114666.	2.5	7
3	Highly selective adsorption of 5-hydroxymethylfurfural from multicomponent mixture by simple pH controlled in batch and fixed-bed column studies: Competitive isotherms, kinetic and breakthrough curves simulation. Separation and Purification Technology, 2022, 299, 121756.	3.9	7
4	Insights into the Play of Novel BrÃ,nsted Acid-Based Deep Eutectic Solvents for the Conversion of Glucose into 5-Hydroxymethylfurfural without Additional Catalysts. Industrial & Engineering Chemistry Research, 2022, 61, 11645-11654.	1.8	3
5	High-efficient cellulosic butanol production from deep eutectic solvent pretreated corn stover without detoxification. Industrial Crops and Products, 2021, 162, 113258.	2.5	33
6	Adsorption of 5-Hydroxymethylfurfural, Levulinic Acid, Formic Acid, and Glucose Using Polymeric Resins Modified with Different Functional Groups. ACS Omega, 2021, 6, 16955-16968.	1.6	14
7	Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renewable Energy, 2021, 177, 259-267.	4.3	57
8	Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification. Bioresource Technology, 2021, 339, 125575.	4.8	33
9	Preparation of Polar-Modified Styrene-Divinylbenzene Copolymer and Its Adsorption Performance for Comprehensive Utilization of Sugarcane Bagasse Dilute-Acid Hydrolysate. Applied Biochemistry and Biotechnology, 2020, 190, 423-436.	1.4	5
10	Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin. Chemosphere, 2020, 239, 124732.	4.2	26
11	Global View of Biofuel Butanol and Economics of Its Production by Fermentation from Sweet Sorghum Bagasse, Food Waste, and Yellow Top Presscake: Application of Novel Technologies. Fermentation, 2020, 6, 58.	1.4	27
12	Evaluation of Pore Structure of Polarity-Controllable Post-Cross-Linked Adsorption Resins on the Adsorption Performance of 5-Hydroxymethylfurfural in Both Single- and Ternary-Component Systems. Industrial & Engineering Chemistry Research, 2020, 59, 17575-17586.	1.8	16
13	Enhanced Enzymatic Hydrolysis and Lignin Extraction of Wheat Straw by Triethylbenzyl Ammonium Chloride/Lactic Acid-Based Deep Eutectic Solvent Pretreatment. ACS Omega, 2019, 4, 19829-19839.	1.6	69
14	Controllable Synthesis of Styrene-divinylbenzene Adsorption Resins and the Effect of Textural Properties on Removal Performance of Fermentation Inhibitors from Rice Straw Hydrolysate. Industrial & Engineering Chemistry Research, 2018, 57, 5119-5127.	1.8	19
15	Controllable synthesis of monoacrylateâ€modified adsorption resins and enhancing adsorption toward fermentation inhibitors from rice straw hydrolysate. Journal of Chemical Technology and Biotechnology, 2018, 93, 2652-2658.	1.6	12
16	Microbial conversion of wastewater from butanol fermentation to microbial oil and biomass by oleaginous yeasts. Environmental Progress and Sustainable Energy, 2018, 37, 1220-1226.	1.3	3
17	Experimental and Mathematical Simulation of Noncompetitive and Competitive Adsorption Dynamic of Formic Acid–Levulinic Acid–5-Hydroxymethylfurfural from Single, Binary, and Ternary Systems in a Fixed-Bed Column of SY-01 Resin. Industrial & Engineering Chemistry Research, 2018, 57, 8518-8528.	1.8	31
18	Equilibrium, kinetic and thermodynamic studies of acid soluble lignin adsorption from rice straw hydrolysate by a self-synthesized macro/mesoporous resin. RSC Advances, 2017, 7, 23896-23906.	1.7	30

Xiaoqing Lin

#	Article	IF	CITATIONS
19	Comparison of bacterial cellulose production by <i>Gluconacetobacter xylinus</i> on bagasse acid and enzymatic hydrolysates. Journal of Applied Polymer Science, 2017, 134, 45066.	1.3	23
20	Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies. Chemosphere, 2017, 171, 231-239.	4.2	47
21	Lumping kinetics of ABE fermentation wastewater treatment by oleaginous yeast <i>Trichosporon cutaneum</i> . Preparative Biochemistry and Biotechnology, 2017, 47, 860-866.	1.0	2
22	Combined "de novo―and "ex novo―lipid fermentation in a mix-medium of corncob acid hydrolysate and soybean oil by Trichosporon dermatis. Biotechnology for Biofuels, 2017, 10, 147.	6.2	22
23	Estimation of fixed-bed column parameters and mathematical modeling of breakthrough behaviors for adsorption of levulinic acid from aqueous solution using SY-01 resin. Separation and Purification Technology, 2017, 174, 222-231.	3.9	92
24	Improvement and Characterization in Enzymatic Hydrolysis of Regenerated Wheat Straw Dissolved by LiCl/DMAc Solvent System. Applied Biochemistry and Biotechnology, 2017, 181, 177-191.	1.4	10
25	Extraction and characterization of wax from sugarcane bagasse and the enzymatic hydrolysis of dewaxed sugarcane bagasse. Preparative Biochemistry and Biotechnology, 2017, 47, 276-281.	1.0	23
26	CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum. Biotechnology Letters, 2017, 39, 97-104.	1.1	11
27	Bacterial cellulose production from the litchi extract by <i>Gluconacetobacter xylinus</i> . Preparative Biochemistry and Biotechnology, 2016, 46, 39-43.	1.0	40
28	Purification of Lignocellulose Hydrolysate by Org-Attapulgite/(Divinyl Benzene-Styrene-Methyl) Tj ETQq0 0 0 rgB	Г /Qverloc 0.5	k 10 Tf 50 38
29	Use of elephant grass (Pennisetum purpureum) acid hydrolysate for microbial oil production by Trichosporon cutaneum. Preparative Biochemistry and Biotechnology, 2016, 46, 704-708.	1.0	11
30	Comparison of fermentation by mono-culture and co-culture of oleaginous yeasts for ABE (acetone-) Tj ETQq0 0 Engineering, 2016, 4, 3803-3809.	0 rgBT /O 3.3	verlock 10 Tf 10
31	Elucidating the Beneficial Effect of Corncob Acid Hydrolysate Environment on Lipid Fermentation of Trichosporon dermatis by Method of Cell Biology. Applied Biochemistry and Biotechnology, 2016, 178, 1420-1429.	1.4	1
32	Semi-pilot Scale Microbial Oil Production by Trichosporon cutaneum Using Medium Containing Corncob Acid Hydrolysate. Applied Biochemistry and Biotechnology, 2016, 179, 625-632.	1.4	10
33	Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydrate Polymers, 2016, 136, 198-202.	5.1	109
34	Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by <i>Gluconacetobacter xylinus</i> . Letters in Applied Microbiology, 2015, 60, 491-496.	1.0	61
35	Utilization of Corncob Acid Hydrolysate for Bacterial Cellulose Production by Gluconacetobacter xylinus. Applied Biochemistry and Biotechnology, 2015, 175, 1678-1688.	1.4	28
36	Using Butanol Fermentation Wastewater for Biobutanol Production after Removal of Inhibitory Compounds by Micro/Mesoporous Hyper-Cross-Linked Polymeric Adsorbent. ACS Sustainable Chemistry and Engineering, 2015, 3, 702-709.	3.2	40

Xiaoqing Lin

#	Article	IF	CITATIONS
37	Solvents Production from a Mixture of Glucose and Xylose by Mixed Fermentation of Clostridium acetobutylicum and Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2015, 177, 996-1002.	1.4	21
38	Beneficial Effect of Corncob Acid Hydrolysate on the Lipid Production by Oleaginous Yeast <i>Trichosporon dermatis</i> . Preparative Biochemistry and Biotechnology, 2015, 45, 421-429.	1.0	17
39	Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnology for Biofuels, 2014, 7, 5.	6.2	74
40	Optimization and Validation of a GC–FID Method for the Determination of Acetone-Butanol-Ethanol Fermentation Products. Journal of Chromatographic Science, 2014, 52, 264-270.	0.7	15
41	Bioconversion of Corncob Acid Hydrolysate into Microbial Oil by the Oleaginous Yeast Lipomyces starkeyi. Applied Biochemistry and Biotechnology, 2014, 172, 2197-2204.	1.4	55
42	Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus. Indian Journal of Microbiology, 2014, 54, 268-273.	1.5	17
43	Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed-bed of KA-I resin. Biotechnology and Bioprocess Engineering, 2013, 18, 223-233.	1.4	51
44	Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption. Bioresource Technology, 2013, 129, 321-328.	4.8	62
45	Computational simulations of breakthrough curves in cAMP adsorption processes in ion-exchange bed under hydrodynamic flow. Chemical Engineering Journal, 2012, 197, 424-434.	6.6	15
46	Modeling the cAMP desorption process from an anion exchange chromatography column. Chemical Engineering Science, 2012, 80, 317-325.	1.9	4
47	Separation of d-lactic acid from aqueous solutions based on the adsorption technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 407, 29-37.	2.3	25
48	Selective separation of biobutanol from acetone–butanol–ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin. Biotechnology Progress, 2012, 28, 962-972.	1.3	50
49	Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: Studies of adsorption isotherms and kinetics simulation. Journal of Chemical Technology and Biotechnology, 2012, 87, 924-931.	1.6	75
50	Adsorption Thermodynamics and Kinetics of Uridine 5′-Monophosphate on a Gel-Type Anion Exchange Resin. Industrial & Engineering Chemistry Research, 2011, 50, 9270-9279.	1.8	22
51	Studies of equilibrium, kinetics simulation and thermodynamics of cAMP adsorption onto an anion-exchange resin. Chemical Engineering Journal, 2010, 165, 907-915.	6.6	13
52	Sorption behavior and mechanism investigation of formic acid removal by sorption using an anion-exchange resin. Desalination and Water Treatment, 0, , 1-16.	1.0	6