Xue-Zhong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3234006/publications.pdf

Version: 2024-02-01

		126858	168321
113	3,314	33	53
papers	citations	h-index	g-index
113	113	113	5553
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell Metabolism, 2018, 27, 85-100.e8.	7.2	197
2	NF- \hat{l}° B-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nature Communications, 2015, 6, 7652.	5.8	191
3	Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORÎ 3 t in mice. Blood, 2011, 118, 5011-5020.	0.6	136
4	Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood, 2011, 118, 5671-5680.	0.6	134
5	CD28 Controls Differentiation of Regulatory T Cells from Naive CD4 T Cells. Journal of Immunology, 2008, 181, 2285-2291.	0.4	107
6	Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. Journal of Clinical Investigation, 2016, 126, 1337-1352.	3.9	107
7	T helper17 Cells Are Sufficient But Not Necessary to Induce Acute Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2010, 16, 170-178.	2.0	100
8	Inhibition of BTK and ITK with Ibrutinib Is Effective in the Prevention of Chronic Graft-versus-Host Disease in Mice. PLoS ONE, 2015, 10, e0137641.	1.1	84
9	Antigen-dependent suppression of alloresponses byFoxp3-induced regulatory T cells in transplantation. European Journal of Immunology, 2005, 35, 2598-2607.	1.6	77
10	MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3. Nature Communications, 2015, 6, 7639.	5.8	76
11	Pro-Survival Lipid Sphingosine-1-Phosphate Metabolically Programs T Cells to Limit Anti-tumor Activity. Cell Reports, 2019, 28, 1879-1893.e7.	2.9	71
12	PKCÎ, is required for alloreactivity and GVHD but not for immune responses toward leukemia and infection in mice. Journal of Clinical Investigation, 2009, 119, 3774-3786.	3.9	70
13	Role of CD28 in Acute Graft-Versus-Host Disease. Blood, 1998, 92, 2963-2970.	0.6	62
14	Dynamic Change and Impact of Myeloid-Derived Suppressor Cells in Allogeneic Bone Marrow Transplantation in Mice. Biology of Blood and Marrow Transplantation, 2013, 19, 692-702.	2.0	61
15	Targeting JAK2 reduces GVHD and xenograft rejection through regulation of T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1582-1587.	3.3	59
16	MicroRNA-17-92 controls T-cell responses in graft-versus-host disease and leukemia relapse in mice. Blood, 2015, 126, 1314-1323.	0.6	58
17	Adoptive Transfer of Tc1 or Tc17 Cells Elicits Antitumor Immunity against Established Melanoma through Distinct Mechanisms. Journal of Immunology, 2013, 190, 1873-1881.	0.4	55
18	Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. Blood, 2019, 133, 266-279.	0.6	55

#	Article	IF	Citations
19	T cells lacking HDAC11 have increased effector functions and mediate enhanced alloreactivity in a murine model. Blood, 2017, 130, 146-155.	0.6	54
20	MicroRNA-17-92 is required for T-cell and B-cell pathogenicity in chronic graft-versus-host disease in mice. Blood, 2018, 131, 1974-1986.	0.6	51
21	Efficient and Selective Prevention of GVHD by Antigen-Specific Induced Tregs via Linked-Suppression in Mice. Biology of Blood and Marrow Transplantation, 2011, 17, 309-318.	2.0	49
22	Reducing CD73 Expression by $IL1\hat{1}^2$ -Programmed Th17 Cells Improves Immunotherapeutic Control of Tumors. Cancer Research, 2014, 74, 6048-6059.	0.4	49
23	Ceramide synthesis regulates T cell activity and GVHD development. JCI Insight, 2017, 2, .	2.3	49
24	CD8 ⁺ Tregs promote GVHD prevention and overcome the impaired GVL effect mediated by CD4 ⁺ Tregs in mice. Oncolmmunology, 2016, 5, e1146842.	2.1	48
25	\hat{l}^22 integrins separate graft-versus-host disease and graft-versus-leukemia effects. Blood, 2008, 111, 954-962.	0.6	47
26	The IL-12 Cytokine and Receptor Family in Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 988.	2.2	46
27	Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. Journal of Hematology and Oncology, 2015, 8, 13.	6.9	44
28	Opposing Effects of ICOS on Graft-versus-Host Disease Mediated by CD4 and CD8 T Cells. Journal of Immunology, 2006, 176, 7394-7401.	0.4	43
29	A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. JCI Insight, 2021, 6, .	2.3	43
30	Human regulatory T cells against minor histocompatibility antigens: ex vivo expansion for prevention of graft-versus-host disease. Blood, 2013, 122, 2251-2261.	0.6	42
31	Roles of CD28, CTLA4, and Inducible Costimulator in Acute Graft-versus-Host Disease in Mice. Biology of Blood and Marrow Transplantation, 2011, 17, 962-969.	2.0	41
32	Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clinical Cancer Research, 2019, 25, 1036-1049.	3.2	41
33	Pharmacologic inhibition of PKCα and PKCÎ, prevents GVHD while preserving GVL activity in mice. Blood, 2013, 122, 2500-2511.	0.6	37
34	T-bet Is Critical for the Development of Acute Graft-versus-Host Disease through Controlling T Cell Differentiation and Function. Journal of Immunology, 2015, 194, 388-397.	0.4	37
35	Abundant c-Fas–associated death domain–like interleukin-1–converting enzyme inhibitory protein expression determines resistance of T helper 17 cells to activation-induced cell death. Blood, 2009, 114, 1026-1028.	0.6	36
36	Exploiting IL-17-producing CD4+ and CD8+ T cells to improve cancer immunotherapy in the clinic. Cancer Immunology, Immunotherapy, 2016, 65, 247-259.	2.0	35

#	Article	IF	CITATIONS
37	Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor TÂcell response. Cell Reports, 2021, 35, 109076.	2.9	35
38	A novel prognostic biomarker SPC24 up-regulated in hepatocellular carcinoma. Oncotarget, 2015, 6, 41383-41397.	0.8	33
39	RNA binding protein PCBP1 is an intracellular immune checkpoint for shaping T cell responses in cancer immunity. Science Advances, 2020, 6, eaaz3865.	4.7	32
40	Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset. Oncotarget, 2017, 8, 30199-30216.	0.8	32
41	Alloantigen Affinity and CD4 Help Determine Severity of Graft-versus-Host Disease Mediated by CD8 Donor T Cells. Journal of Immunology, 2006, 176, 3383-3390.	0.4	31
42	T-Cell Metabolism in Hematopoietic Cell Transplantation. Frontiers in Immunology, 2018, 9, 176.	2.2	29
43	STAT5 polarization promotes iTregs and suppresses human T-cell alloresponses while preserving CTL capacity. Journal of Leukocyte Biology, 2013, 95, 205-213.	1.5	28
44	Regulatory B cells promote graft-versus-host disease prevention and maintain graft-versus-leukemia activity following allogeneic bone marrow transplantation. Oncolmmunology, 2017, 6, e1284721.	2.1	28
45	Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. Journal of Biological Chemistry, 2019, 294, 9198-9212.	1.6	28
46	Thioredoxin-1 confines T cell alloresponse and pathogenicity in graft-versus-host disease. Journal of Clinical Investigation, 2019, 129, 2760-2774.	3.9	28
47	PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. Journal of Clinical Investigation, 2018, 128, 2787-2801.	3.9	28
48	Regulatory T-Cell Therapy for Graft-versus-host Disease. Journal of Immunology Research and Therapy, 2016, 1, 1-14.	1.0	27
49	Essential Role of Interleukin-12/23p40 in the Development of Graft-versus-Host Disease in Mice. Biology of Blood and Marrow Transplantation, 2015, 21, 1195-1204.	2.0	26
50	Stabilization of Foxp3 by Targeting JAK2 Enhances Efficacy of CD8 Induced Regulatory T Cells in the Prevention of Graft-versus-Host Disease. Journal of Immunology, 2018, 201, 2812-2823.	0.4	26
51	Prevention of lethal acute GVHD with an agonistic CD28 antibody and rapamycin. Blood, 2005, 105, 1355-1361.	0.6	25
52	HY-Specific Induced Regulatory T Cells Display High Specificity and Efficacy in the Prevention of Acute Graft-versus-Host Disease. Journal of Immunology, 2015, 195, 717-725.	0.4	25
53	Systemic therapy with oncolytic myxoma virus cures established residual multiple myeloma in mice. Molecular Therapy - Oncolytics, 2016, 3, 16032.	2.0	25
54	LBH589 Enhances T Cell Activation InÂVivo and Accelerates Graft-versus-Host Disease in Mice. Biology of Blood and Marrow Transplantation, 2012, 18, 1182-1190.e1.	2.0	24

#	Article	IF	CITATIONS
55	Nuclear PFKP promotes CXCR4-dependent infiltration by T cell acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131 , .	3.9	23
56	Helper T-Cell Differentiation in Graft-Versus-Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation. Archivum Immunologiae Et Therapiae Experimentalis, 2014, 62, 277-301.	1.0	22
57	Complement C3a and C5a receptors promote GVHD by suppressing mitophagy in recipient dendritic cells. JCI Insight, 2018, 3, .	2.3	22
58	Phosphatidylinositol 3-Kinase–Independent Signaling Pathways Contribute to ICOS-Mediated T Cell Costimulation in Acute Graft-Versus-Host Disease in Mice. Journal of Immunology, 2013, 191, 200-207.	0.4	19
59	Inducible T-Cell Co-Stimulator Impacts Chronic Graft-Versus-Host Disease by Regulating Both Pathogenic and Regulatory T Cells. Frontiers in Immunology, 2018, 9, 1461.	2.2	19
60	Inhibition of the IRE- $1\hat{l}\pm/XBP-1$ pathway prevents chronic GVHD and preserves the GVL effect in mice. Blood Advances, 2018, 2, 414-427.	2.5	18
61	Cereblon harnesses Myc-dependent bioenergetics and activity of CD8+ T lymphocytes. Blood, 2020, 136, 857-870.	0.6	18
62	<scp>c</scp> â€ <scp>R</scp> el is an essential transcription factor for the development of acute graftâ€versusâ€host disease in mice. European Journal of Immunology, 2013, 43, 2327-2337.	1.6	17
63	Vitamin C stabilizes CD8+ iTregs and enhances their therapeutic potential in controlling murine GVHD and leukemia relapse. Blood Advances, 2019, 3, 4187-4201.	2.5	16
64	Expression of GM-CSF Is Regulated by Fli-1 Transcription Factor, a Potential Drug Target. Journal of Immunology, 2021, 206, 59-66.	0.4	14
65	Modelling CAR-T therapy in humanized mice. EBioMedicine, 2019, 40, 25-26.	2.7	13
66	Lower incidence of acute GVHD is associated with the rapid recovery of CD4+CD25+CD45RA+ regulatory T cells in patients who received haploidentical allografts from NIMA-mismatched donors: A retrospective (development) and prospective (validation) cohort-based study. OncoImmunology, 2016, 5, e1242546.	2.1	11
67	T-bet Promotes Acute Graft-versus-Host Disease by Regulating Recipient Hematopoietic Cells in Mice. Journal of Immunology, 2016, 196, 3168-3179.	0.4	9
68	Interleukin-23 receptor signaling by interleukin-39 potentiates T cell pathogenicity in acute graft-versus-host disease. American Journal of Transplantation, 2021, 21, 3538-3549.	2.6	9
69	NFâ€̂ºB is crucial in proximal Tâ€ɛell signaling for calcium influx and NFAT activation. European Journal of Immunology, 2014, 44, 3741-3746.	1.6	8
70	Targeting the Complement Alternative Pathway Permits Graft Versus Leukemia Activity while Preventing Graft Versus Host Disease. Clinical Cancer Research, 2020, 26, 3481-3490.	3.2	7
71	MicroRNA-31 regulates T-cell metabolism via HIF1 $\hat{l}\pm$ and promotes chronic GVHD pathogenesis in mice. Blood Advances, 2022, 6, 3036-3052.	2.5	7
72	Ceramide synthase 6 impacts T-cell allogeneic response and graft-versus-host disease through regulating N-RAS/ERK pathway. Leukemia, 2022, 36, 1907-1915.	3.3	7

#	Article	IF	CITATIONS
73	Editorial: Pathogenesis and Therapy of Graft-versus-Host Disease. Frontiers in Immunology, 2019, 10, 1797.	2.2	6
74	Role of corticotrophin releasing hormone in cerebral infarction-related gastrointestinal barrier dysfunction. World Journal of Emergency Medicine, 2011, 2, 59-65.	0.5	6
75	Targeting PKC \hat{l}_s in alloreactivity and graft-versus-host-disease: unanswered questions and therapeutic potential. Frontiers in Immunology, 2012, 3, 259.	2.2	5
76	Lysosomal Acid Lipase Is Required for Donor T Cells to Induce Graft-versus-Host Disease. Cell Reports, 2020, 33, 108316.	2.9	5
77	STING negatively regulates allogeneic T-cell responses by constraining antigen-presenting cell function. Cellular and Molecular Immunology, 2021, 18, 632-643.	4.8	5
78	Targeting JAK2 By Gene Knockout or Pacritinib Treatment Reduces Gvhd and Xenograft Rejection By Promoting Induced Treg Differentiation. Blood, 2015, 126, 1874-1874.	0.6	5
79	IL-17A ≠Th17 in GvHD. Cellular and Molecular Immunology, 2018, 15, 282-283.	4.8	3
80	Donor T-Cell Repertoire Profiling in Recipient Lymphoid and Parenchyma Organs Reveals GVHD Pathogenesis at Clonal Levels After Bone Marrow Transplantation in Mice. Frontiers in Immunology, 2021, 12, 778996.	2.2	3
81	Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice. Biochemical and Biophysical Research Communications, 2014, 446, 1035-1041.	1.0	2
82	T-Cell Costimulation and Coinhibition in Graft-Versus-Host Disease and Graft-Versus-Leukemia Effect. , 2019, , $167-194$.		2
83	Clarifying the translational potential of B-109. Nature Chemical Biology, 2020, 16, 1152-1152.	3.9	2
84	Allogeneic T Cells Utilize Glycolysis As the Predominant Metabolic Pathway to Induce Acute Graft-Versus-Host Disease. Blood, 2014, 124, 2419-2419.	0.6	2
85	IL-27 Receptor Signaling on T cells Augments GVHD Severity through Enhancing Th1 Responses. Journal of Immunology Research and Therapy, 2018, 3, 151-157.	1.0	2
86	XBP-1s Promotes B Cell Pathogenicity in Chronic GVHD by Restraining the Activity of Regulated IRE-11±-Dependent Decay. Frontiers in Immunology, 2021, 12, 705484.	2.2	1
87	Targeting Host Complement C3a/C5a Receptors to Control of Acute Graft-Versus-Host Disease in Mice. Blood, 2015, 126, 3076-3076.	0.6	1
88	Enhance T Cell Immunotherapy By Targeting PIM-2 Kinase. Blood, 2016, 128, 815-815.	0.6	1
89	Microrna-17-92 Cluster: Novel Target for Controlling Gvhd While Preserving GVL Effect. Blood, 2014, 124, 845-845.	0.6	1
90	Fli-1 Regulates Multiple T-Cell Subsets during Inflammatory Responses and Experimental Graft-Versus-Host Disease. Blood, 2019, 134, 3201-3201.	0.6	1

#	Article	IF	Citations
91	2050 Identifying the role and immunobiological mechanisms of Fli-1 mediated pathogenicity in graft Versus host disease. Journal of Clinical and Translational Science, 2018, 2, 14-15.	0.3	0
92	Genetic and Pharmacologic Inhibition of PKC \hat{l}_s and PKC \hat{l}_\pm Prevents Acute Gvhd While Sparing GVL Activity in Mice Blood, 2012, 120, 3000-3000.	0.6	0
93	T-Bet Is Critical for the Development of Acute Graft-Versus-Host Disease Through Controlling T Cell Differentiation and Function. Blood, 2012, 120, 452-452.	0.6	0
94	Dynamic Changes and Impact of Myeloid Derived Suppressor Cells in Allogeneic Bone Marrow Transplantation in Mice Blood, 2012, 120, 2999-2999.	0.6	0
95	High Efficacy of Alloantigen-Specific Induced Regulatory T Cells in the Prevention of Acute Graft-Versus-Host Disease in Mice. Blood, 2012, 120, 4112-4112.	0.6	0
96	Perfecting Adoptive Cellular Therapy for Graft-Versus-Host Disease: Alloreactive Induced T Regulatory Cells. Blood, 2014, 124, 3813-3813.	0.6	0
97	T-Bet Is Critical for the Development of Acute Graft-Versus-Host Disease By Regulating Hematopoietic Antigen Presenting Cells. Blood, 2014, 124, 846-846.	0.6	0
98	PIM2 Kinase Regulates T-Cell Alloresponses and Graft-Versus-Host Disease in Mice. Blood, 2015, 126, 3074-3074.	0.6	0
99	CD8 Tregs Promote Gvhd Prevention and Restore Impaired GVL Effect Mediated By CD4 Tregs in Mice. Blood, 2015, 126, 1873-1873.	0.6	0
100	Inhibition of Alternative Complement Pathway in Target Organs Represents a Novel and Effective Approach to Control Gvhd While Sparing GVL Effect. Blood, 2016, 128, 807-807.	0.6	0
101	Therapeutic Targeting of PIM Protein Kinases in a Subset of T-Cell Acute Lymphoblastic Leukemia. Blood, 2016, 128, 2742-2742.	0.6	0
102	Prevention of Chronic Gvhd By Targeting Xbp-1 Genetically or Pharmacologically in Mice. Blood, 2016, 128, 4541-4541.	0.6	0
103	MiR-17-92 Is Required for the Pathogenicity of T and B Cells in Chronic Gvhd. Blood, 2016, 128, 4535-4535.	0.6	0
104	Abstract 5820: Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset. , 2017, , .		0
105	Association of Donor T Cell Repertoire in Host Lymphoid and Target Organs and Gvhd Development. Blood, 2018, 132, 4525-4525.	0.6	0
106	Vitamin C Stabilizes CD8iTregs and Enhances Their Therapeutic Potential in Controlling GvHD and Leukemia Relapse. Blood, 2018, 132, 4532-4532.	0.6	0
107	RNA-Binding Protein PCBP1/hnRNP E1 is an Intracellular Checkpoint for Shaping Effector Versus Regulatory T Cells in Immunity and Cancer. SSRN Electronic Journal, 0, , .	0.4	0
108	Microrna-31 Regulates T-Cell Metabolism Via HIF1 \hat{l}_{\pm} and Promotes Effector Function. Blood, 2019, 134, 623-623.	0.6	0

Xue-Zhong Yu

#	Article	IF	CITATIONS
109	Potential Role of IL-39 in the Development of Gvhd. Blood, 2019, 134, 3206-3206.	0.6	O
110	S1P/S1PR1 Signalis Required for Optimal T-Cell Pathogenicity to Induce Gvhd By RegulatingDrp1/mTOR Axis. Blood, 2021, 138, 643-643.	0.6	0
111	Ridd Is Required for the Prevention of Chronic Gvhd By Targeting IRE-1a/Xbp-1s Signaling. Blood, 2021, 138, 1681-1681.	0.6	O
112	Targeting Pim2 for Improving T-Cell Effector Function and Promoting Cancer Immunotherapy. Blood, 2021, 138, 1720-1720.	0.6	0
113	Sting Negatively Regulates Allogeneic T-Cell Responses By Constraining Antigen-Presenting Cell Function. Blood, 2020, 136, 37-38.	0.6	0