Thomas Welton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3233457/publications.pdf

Version: 2024-02-01

188 papers 38,901 citations

9786 73 h-index 173 g-index

231 all docs

231 docs citations

231 times ranked

22668 citing authors

#	Article	IF	CITATIONS
1	Pressing matter: why are ionic liquids so viscous?. Chemical Science, 2022, 13, 2735-2743.	7.4	19
2	Effect of the cation structure on the properties of homobaric imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2022, 24, 6453-6468.	2.8	6
3	Mechanical spectroscopy study of ionic liquids with quaternary cations: Effect of conformational flexibility. Journal of Alloys and Compounds, 2022, 919, 165860.	5.5	2
4	Synthesis of aprotic ionic liquids. Nature Reviews Methods Primers, 2022, 2, .	21.2	17
5	Investigation of the influence of natural deep eutectic solvents (NaDES) in the properties of chitosan-stabilised films. Materials Advances, 2021, 2, 3954-3964.	5.4	12
6	Targeted modifications in ionic liquids – from understanding to design. Physical Chemistry Chemical Physics, 2021, 23, 6993-7021.	2.8	71
7	Process Analysis of Ionic Liquid-Based Blends as H ₂ S Absorbents: Search for Thermodynamic/Kinetic Synergies. ACS Sustainable Chemistry and Engineering, 2021, 9, 2080-2088.	6.7	15
8	A review on machine learning algorithms for the ionic liquid chemical space. Chemical Science, 2021, 12, 6820-6843.	7.4	80
9	Curled cation structures accelerate the dynamics of ionic liquids. Physical Chemistry Chemical Physics, 2021, 23, 21042-21064.	2.8	14
10	Mixing divalent ionic liquids: effects of charge and side-chains. Physical Chemistry Chemical Physics, 2021, 23, 4624-4635.	2.8	7
11	Sustainability and international chemistry collaboration. National Science Review, 2021, 8, nwab037.	9.5	1
12	Observation of the Pockels Effect in Ionic Liquids and Insights into the Length Scale of Potential-Induced Ordering. Langmuir, 2021, 37, 5193-5201.	3.5	7
13	Energy and environmental analysis of flavonoids extraction from bark using alternative solvents. Journal of Cleaner Production, 2021, 308, 127286.	9.3	14
14	High throughput study of ionic liquids in controlled environments with FTIR spectroscopic imaging. Journal of Molecular Liquids, 2021, 337, 116412.	4.9	6
15	Extraction of flavonoid compounds from bark using sustainable deep eutectic solvents. Sustainable Chemistry and Pharmacy, 2021, 24, 100544.	3.3	13
16	Non-traditional solvent effects in organic reactions. Physical Chemistry Chemical Physics, 2021, 23, 26028-26029.	2.8	3
17	Ether functionalisation, ion conformation and the optimisation of macroscopic properties in ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 23038-23056.	2.8	34
18	MAS NMR Investigation of Molecular Order in an Ionic Liquid Crystal. Journal of Physical Chemistry B, 2020, 124, 4975-4988.	2.6	17

#	Article	IF	Citations
19	Conformational design concepts for anions in ionic liquids. Chemical Science, 2020, 11, 6405-6422.	7.4	33
20	The effect of structural heterogeneity upon the microviscosity of ionic liquids. Chemical Science, 2020, 11, 6121-6133.	7.4	21
21	Effect of an external electric field on the dynamics and intramolecular structures of ions in an ionic liquid. Journal of Chemical Physics, 2019, 151, 164503.	3.0	24
22	On the structural origin of free volume in 1-alkyl-3-methylimidazolium ionic liquid mixtures: a SAXS and 129Xe NMR study. Physical Chemistry Chemical Physics, 2019, 21, 5999-6010.	2.8	21
23	On the Carbene-Like Reactions of Imidazolium Acetate Ionic Liquids: Can Theory and Experiments Agree?. European Journal of Organic Chemistry, 2019, 2019, 504-511.	2.4	21
24	Use of Ionic Liquids for the Biorefinery. , 2019, , 223-255.		0
25	Ionic liquids: a brief history. Biophysical Reviews, 2018, 10, 691-706.	3.2	658
26	Regenerated Cellulose and Willow Lignin Blends as Potential Renewable Precursors for Carbon Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 5903-5910.	6.7	49
27	Design of task-specific fluorinated ionic liquids: nanosegregation <i>versus</i> hydrogen-bonding ability in aqueous solutions. Chemical Communications, 2018, 54, 3524-3527.	4.1	17
28	Structure and lifetimes in ionic liquids and their mixtures. Faraday Discussions, 2018, 206, 219-245.	3.2	74
29	A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. Physical Chemistry Chemical Physics, 2018, 20, 206-213.	2.8	121
30	Ken Seddon—obituary. Biophysical Reviews, 2018, 10, 707-707.	3.2	0
31	Use of Ionic Liquids for the Biorefinery. , 2018, , 1-33.		0
32	Study on Gas Permeation and CO ₂ Separation through Ionic Liquid-Based Membranes with Siloxane-Functionalized Cations. Industrial & Engineering Chemistry Research, 2017, 56, 2229-2239.	3.7	23
33	lonic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chemistry, 2017, 19, 2051-2075.	9.0	118
34	Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment. Faraday Discussions, 2017, 202, 331-349.	3.2	67
35	Evidence for the spontaneous formation of N-heterocyclic carbenes in imidazolium based ionic liquids. Chemical Communications, 2017, 53, 11154-11156.	4.1	29
36	The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes. Dalton Transactions, 2017, 46, 12185-12200.	3.3	15

#	Article	IF	CITATIONS
37	lonic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies. Physical Chemistry Chemical Physics, 2017, 19, 21556-21564.	2.8	18
38	Superbase ionic liquids for effective cellulose processing from dissolution to carbonisation. Green Chemistry, 2017, 19, 5949-5957.	9.0	44
39	Linking the structures, free volumes, and properties of ionic liquid mixtures. Chemical Science, 2017, 8, 6359-6374.	7.4	74
40	An easy and reliable method for syringyl: guaiacyl ratio measurement. Tappi Journal, 2017, 16, 145-152.	0.5	1
41	Correction: Determination of Kamlet–Taft parameters for selected solvate ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 19975-19975.	2.8	1
42	Solvate Ionic Liquids as Reaction Media for Electrocyclic Transformations. European Journal of Organic Chemistry, 2016, 2016, 913-917.	2.4	27
43	Building an Inclusive Culture in the Chemistry Department at Imperial College. Chemistry - A European Journal, 2016, 22, 3535-3536.	3.3	2
44	A robotic platform for high-throughput electrochemical analysis of chalcopyrite leaching. Green Chemistry, 2016, 18, 1930-1937.	9.0	13
45	Enhancing the stability of ionic liquid media for cellulose processing: acetal protection or carbene suppression?. Green Chemistry, 2016, 18, 3758-3766.	9.0	32
46	Solubility of alkali metal halides in the ionic liquid [C ₄ C ₁ im][OTf]. Physical Chemistry Chemical Physics, 2016, 18, 16161-16168.	2.8	25
47	Determination of Kamlet–Taft parameters for selected solvate ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 13153-13157.	2.8	34
48	Willow Lignin Oxidation and Depolymerization under Low Cost Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2016, 4, 5277-5288.	6.7	57
49	Oxidative Depolymerization of Lignin Using a Novel Polyoxometalate-Protic Ionic Liquid System. ACS Sustainable Chemistry and Engineering, 2016, 4, 6031-6036.	6.7	89
50	Mechanistic insights into lignin depolymerisation in acidic ionic liquids. Green Chemistry, 2016, 18, 5456-5465.	9.0	93
51	Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Physical Chemistry Chemical Physics, 2016, 18, 18145-18160.	2.8	272
52	Basicity and catalytic activity of porous materials based on a (Si,Al)-N framework. Applied Catalysis A: General, 2016, 520, 157-169.	4.3	6
53	Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts. Physical Chemistry Chemical Physics, 2016, 18, 3339-3351.	2.8	13
54	A structural investigation of ionic liquid mixtures. Physical Chemistry Chemical Physics, 2016, 18, 8608-8624.	2.8	93

#	Article	IF	Citations
55	Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry, 2016, 18, 834-841.	9.0	111
56	Solvents and sustainable chemistry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150502.	2.1	245
57	Hydrogen bonding and π–π interactions in imidazolium-chloride ionic liquid clusters. Physical Chemistry Chemical Physics, 2015, 17, 14437-14453.	2.8	113
58	Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chemistry, 2015, 17, 5019-5034.	9.0	159
59	Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chemistry, 2015, 17, 1728-1734.	9.0	384
60	A physicochemical investigation of ionic liquid mixtures. Chemical Science, 2015, 6, 1101-1114.	7.4	171
61	Ionic liquids: not always innocent solvents for cellulose. Green Chemistry, 2015, 17, 231-243.	9.0	159
62	Heavy Metal Sensing Using Selfâ€Assembled Nanoparticles at a Liquid–Liquid Interface. Advanced Optical Materials, 2014, 2, 966-977.	7.3	47
63	Extended scale for the hydrogen-bond basicity of ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 6593.	2.8	218
64	The potential of methylsiloxanes as solvents for synthetic chemistry applications. Green Chemistry, 2014, 16, 1282-1296.	9.0	18
65	Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 3238.	2.8	173
66	Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chemistry, 2014, 16, 1617.	9.0	148
67	The importance of timescale for hydrogen bonding in imidazolium chloride ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 3675.	2.8	78
68	Inexpensive ionic liquids: [HSO ₄] ^{â^'} -based solvent production at bulk scale. Green Chemistry, 2014, 16, 3098-3106.	9.0	309
69	A quick, simple, robust method to measure the acidity of ionic liquids. Chemical Communications, 2014, 50, 7258-7261.	4.1	28
70	New Experimental Density Data and Soft-SAFT Models of Alkylimidazolium ([C _{<i>n</i>} C ₁ im] ⁺) Chloride (Cl ^{â€"}), Methylsulfate ([MeSO ₄] ^{â^²}), and Dimethylphosphate ([Me ₂ PO ₄] ^{â^²}) Based Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 6206-6221.	2.6	65
71	The impact of anion electronic structure: similarities and differences in imidazolium based ionic liquids. Journal of Physics Condensed Matter, 2014, 26, 284112.	1.8	33
72	On the origin of ionicity in ionic liquids. Ion pairing versus charge transfer. Physical Chemistry Chemical Physics, 2014, 16, 16880-16890.	2.8	191

#	Article	IF	CITATIONS
73	Quantized friction across ionic liquid thin films. Physical Chemistry Chemical Physics, 2013, 15, 15317.	2.8	135
74	Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Physical Chemistry Chemical Physics, 2013, 15, 20480.	2.8	217
75	Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 2013, 15, 550.	9.0	1,243
76	Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 378-382.	4.6	145
77	Interfacial Behavior of Thin Ionic Liquid Films on Mica. Journal of Physical Chemistry C, 2013, 117, 5101-5111.	3.1	60
78	A step towards the a priori design of ionic liquids. Physical Chemistry Chemical Physics, 2013, 15, 11566.	2.8	62
79	Mixtures of ionic liquids. Chemical Society Reviews, 2012, 41, 7780.	38.1	520
80	Hydrogen Bonding in 1-Butyl- and 1-Ethyl-3-methylimidazolium Chloride Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 4921-4933.	2.6	150
81	Preparation of [Al(hfip) ₄] ^{â^'} â€Based Ionic Liquids with Siloxaneâ€Functionalized Cations and Their Physical Properties in Comparison with Their [Tf ₂ N] ^{â^'} Analogues. ChemPhysChem, 2012, 13, 1802-1805.	2.1	16
82	Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. Green Chemistry, 2012, 14, 1079.	9.0	35
83	lonic liquids as media for biomass processing: opportunities and restrictions. Holzforschung, 2011, 65,	1.9	23
84	Ionic liquids in Green Chemistry. Green Chemistry, 2011, 13, 225.	9.0	181
85	Understanding the polarity of ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 16831.	2.8	454
86	Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews, 2011, 111, 3508-3576.	47.7	4,688
87	lonic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 2011, 13, 2489.	9.0	422
88	Salts dissolved in salts: ionic liquid mixtures. Chemical Science, 2011, 2, 1491.	7.4	178
89	Self-assembly in the electrical double layer of ionic liquids. Chemical Communications, 2011, 47, 6572.	4.1	245
90	Understanding siloxane functionalised ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 2018.	2.8	37

#	Article	IF	CITATIONS
91	The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chemistry, 2010, 12, 672.	9.0	294
92	How Polar are Ionic Liquids?. ECS Transactions, 2009, 16, 33-38.	0.5	12
93	Esterification in Ionic Liquids: The Influence of Solvent Basicity. ECS Transactions, 2009, 16, 103-106.	0.5	0
94	In Search of an "Ionic Liquid Effect". ECS Transactions, 2009, 16, 81-87.	0.5	5
95	A theoretical study of the solvent effect on Diels-Alder reaction in room temperature ionic liquids using a supermolecular approach. Theoretical Chemistry Accounts, 2009, 123, 347-352.	1.4	48
96	Charge Screening in the S _N 2 Reaction of Charged Electrophiles and Charged Nucleophiles: An Ionic Liquid Effect. Journal of Organic Chemistry, 2009, 74, 1864-1868.	3.2	98
97	An old reaction in new media: kinetic study of a platinum(II) substitution reaction in ionic liquids. Dalton Transactions, 2009, , 4115.	3.3	25
98	Epoxidation of alkenes by Oxoneâ,,¢ using 2-alkyl-3,4-dihydroisoquinolinium salts as catalysts in ionic liquids. Journal of Molecular Catalysis A, 2008, 279, 148-152.	4.8	24
99	The sustainable chemist. Materials Today, 2008, 11, 56.	14.2	1
100	Nucleophilic Reactions at Cationic Centers in Ionic Liquids and Molecular Solvents. Industrial & Engineering Chemistry Research, 2008, 47, 638-644.	3.7	66
101	Why are ionic liquid ions mainly associated in water? A Car–Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture. Journal of Chemical Physics, 2008, 129, 104505.	3.0	130
102	Is catalysis in ionic liquids a potentially green technology?. Green Chemistry, 2008, 10, 483.	9.0	25
103	Esterification in Ionic Liquids: The Influence of Solvent Basicity. Journal of Organic Chemistry, 2008, 73, 5585-5588.	3.2	60
104	A rationalization of the solvent effect on the Diels–Alder reaction in ionic liquids using multiparameter linear solvation energy relationships. Organic and Biomolecular Chemistry, 2008, 6, 2522.	2.8	131
105	[BMIM][PF6] Promotes the Synthesis of Halohydrin Esters from Diols Using Potassium Halides. Analytical Sciences, 2008, 24, 1341-1345.	1.6	7
106	The chemistry of East Asian lacquer: A review of the scientific literature. Studies in Conservation, 2007, 52, 29-40.	1.1	18
107	Decolorization of Ionic Liquids for Spectroscopy. Analytical Chemistry, 2007, 79, 758-764.	6.5	179
108	lonic Liquids as Designer Solvents for Nucleophilic Aromatic Substitutions. Organic Letters, 2007, 9, 5247-5250.	4.6	166

#	Article	IF	Citations
109	Cooperativity in ionic liquids. Journal of Chemical Physics, 2006, 124, 174506.	3.0	153
110	All solutions have a solvent. Green Chemistry, 2006, 8, 13-13.	9.0	17
111	Using Kamletâ^'Taft Solvent Descriptors To Explain the Reactivity of Anionic Nucleophiles in Ionic Liquids. Journal of Organic Chemistry, 2006, 71, 8847-8853.	3.2	148
112	Understanding Reactions in Ionic Liquids. ChemInform, 2006, 37, no.	0.0	0
113	Synthesis and Structure of Novel Organocycloborates. Chemistry - A European Journal, 2006, 12, 600-606.	3.3	29
114	Characterising the Electronic Structure of Ionic Liquids: An Examination of the 1-Butyl-3-Methylimidazolium Chloride Ion Pair. Chemistry - A European Journal, 2006, 12, 6762-6775.	3.3	427
115	Ionic Liquid-in-Oil Microemulsions. Journal of the American Chemical Society, 2005, 127, 7302-7303.	13.7	371
116	Understanding Reactions in Ionic Liquids. ACS Symposium Series, 2005, , 218-232.	0.5	4
117	Palladium Catalyzed Reactions in Ionic Liquids. Advances in Organometallic Chemistry, 2004, 51, 251-284.	1.0	44
118	lonic Liquids as Solvents for Organic Synthesis. ChemInform, 2004, 35, no.	0.0	0
119	Palladium-Catalyzed Reactions in Ionic Liquids. ChemInform, 2004, 35, no.	0.0	0
120	N-donor complexes of palladium as catalysts for Suzuki cross-coupling reactions in ionic liquids. Journal of Molecular Catalysis A, 2004, 214, 27-32.	4.8	68
121	Ionic liquids in catalysis. Coordination Chemistry Reviews, 2004, 248, 2459-2477.	18.8	1,463
122	Novel organocycloborates via Grignard reagentsElectronic supplementary information (ESI) available: experimental details and 1H, 13C and 11B NMR data for 1, 2, 3 and 4, single crystal X-ray data and additional figures for 3 and 4. See http://www.rsc.org/suppdata/cc/b4/b404864d/. Chemical Communications, 2004, , 1738.	4.1	7
123	Solvent strength of ionic liquid/CO2 mixtures. Physical Chemistry Chemical Physics, 2004, 6, 3280.	2.8	79
124	Precise temperature control in microfluidic devices using Joule heating of ionic liquids. Lab on A Chip, 2004, 4, 417.	6.0	114
125	Chiral Ionic Liquids as Stationary Phases in Gas Chromatography. Analytical Chemistry, 2004, 76, 6819-6822.	6.5	275
126	Nucleophilicity in Ionic Liquids. 3.1Anion Effects on Halide Nucleophilicity in a Series of 1-Butyl-3-methylimidazolium Ionic Liquids. Journal of Organic Chemistry, 2004, 69, 5986-5992.	3.2	108

#	Article	IF	Citations
127	Manipulating Solute Nucleophilicity with Room Temperature Ionic Liquids. Journal of the American Chemical Society, 2004, 126, 11549-11555.	13.7	226
128	Solvent–solute interactions in ionic liquids. Physical Chemistry Chemical Physics, 2003, 5, 2790-2794.	2.8	748
129	Synthesis and Catalysis in Room-Temperature Ionic Liquids. ChemInform, 2003, 34, no.	0.0	0
130	Novel palladium imidazole catalysts for Suzuki cross-coupling reactions. Journal of Molecular Catalysis A, 2003, 206, 77-82.	4.8	79
131	Palladium-Catalyzed Suzuki Cross-Coupling Reactions in Ambient Temperature Ionic Liquids:Â Evidence for the Importance of Palladium Imidazolylidene Complexes. Organometallics, 2003, 22, 5350-5357.	2.3	145
132	Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chemical Communications, 2003, , 2418-2419.	4.1	161
133	Ionic Liquids as Solvents for Organic Synthesis. , 2003, , 457-464.		2
134	Electrochemistry of Vanadium Oxides and Oxyhalides in Chloroaluminate Room Temperature Ionic Liquids: Formation of a New Ionic Liquid. Journal of the Electrochemical Society, 2002, 149, A371.	2.9	23
135	Dynamic Supramolecular Chemistry: The Role of Hydrogen Bonding in Controlling the Selectivity of Diels-Alder Reactions in Room-Temperature Ionic Liquids. ACS Symposium Series, 2002, , 241-246.	0.5	2
136	A Highly Selective Arene Hydrogenation Catalyst that Operates in Ionic Liquid. Journal of the American Chemical Society, 2002, 124, 9334-9335.	13.7	79
137	Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions. Journal of the American Chemical Society, 2002, 124, 14247-14254.	13.7	1,036
138	The role of hydrogen bonding in controlling the selectivity of Diels–Alder reactions in room-temperature ionic liquids. Green Chemistry, 2002, 4, 517-520.	9.0	287
139	Palladium-Catalyzed Carbonâ€"Carbon Coupling Reactions in Room-Temperature Ionic Liquids. ACS Symposium Series, 2002, , 310-320.	0.5	1
140	The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts. Green Chemistry, 2002, 4, 97-102.	9.0	142
141	Increased catalytic productivity for nanofiltration-coupled Heck reactions using highly stable catalyst systems. Green Chemistry, 2002, 4, 319-324.	9.0	46
142	Nucleophilicity in Ionic Liquids. 2.1 Cation Effects on Halide Nucleophilicity in a Series of Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Journal of Organic Chemistry, 2002, 67, 8855-8861.	3.2	191
143	Synthesis and Catalysis in Room-Temperature Ionic Liquids. , 2002, , 345-355.		0
144	A study of halide nucleophilicity in ionic liquids. Perkin Transactions II RSC, 2001, , 2267-2270.	1.1	108

#	Article	IF	CITATIONS
145	In Situ Formation of Mixed Phosphineâ'lmidazolylidene Palladium Complexes in Room-Temperature Ionic Liquids. Organometallics, 2001, 20, 3848-3850.	2.3	184
146	A temperature-controlled reversible ionic liquid - water two phase - single phase protocol for hydrogenation catalysis. Canadian Journal of Chemistry, 2001, 79, 705-708.	1.1	76
147	Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Physical Chemistry Chemical Physics, 2001, 3, 5192-5200.	2.8	1,364
148	$1-Butyl-3-methylimidazolium\ cobalt\ tetracarbonyl\ [bmim][Co(CO)4]:\ a\ catalytically\ active\ organometallic\ ionic\ liquid.\ Chemical\ Communications,\ 2001,\ ,\ 1862-1863.$	4.1	119
149	Electrospray mass spectrometry of $[Ru4(\hat{l}\cdot6-C6H6)4(OH)4]4+$: first direct evidence for the persistence of the cubane unit in solution and its role as a precatalyst in the hydrogenation of benzene. Inorganic Chemistry Communication, 2001, 4, 571-573.	3.9	22
150	A temperature-controlled reversible ionic liquid - water two phase - single phase protocol for hydrogenation catalysis. Canadian Journal of Chemistry, 2001, 79, 705-708.	1.1	6
151	Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures. Chemical Communications, 2000, , 2047-2048.	4.1	379
152	Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids. Chemical Communications, 2000, , 1249-1250.	4.1	248
153	Unprecedented coupling of vinylidene and allenylidene ligands with dithiocarbamates: X-ray structure of [Ru{C(r̃Cr̃CPh2)SC(NMe2)S}(S2CNMe2)(CO)(PPh3)]. Journal of Organometallic Chemistry, 1999, 578, 264-267.	1.8	39
154	Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Letters, 1999, 40, 793-796.	1.4	390
155	Hydrogenation of non-activated alkenes catalysed by water-soluble ruthenium carbonyl clusters using a biphasic protocol. Journal of Molecular Catalysis A, 1999, 150, 71-75.	4.8	36
156	Metal-containing dendritic polymers. Polyhedron, 1999, 18, 3575-3591.	2.2	86
157	Chloroaluminate(III) ionic liquid mediated synthesis of transition metal–cyclophane; complexes: their role as solvent and Lewis acid catalyst. Journal of Organometallic Chemistry, 1999, 573, 292-298.	1.8	28
158	Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews, 1999, 99, 2071-2084.	47.7	11,639
159	Control of intramolecular acetate–allenylidene coupling by spectator co-ligand π-acidity. Journal of the Chemical Society Dalton Transactions, 1999, , 1911-1912.	1.1	24
160	Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chemical Communications, 1999, , 25-26.	4.1	221
161	Alkylidene–Dithiocarbamate coupling—crystal structure of [Ru{κ2-CH(C6H4OMe-4)SC(NC4H8)S}{κ2-S2CNC4H8}(CO)(PPh3)]. New Journal of Chemistry, 1998, 22, 311-31	42.8	11
162	Dithiocarbamate-Functionalized Dendrimers as Ligands for Metal Complexes. Inorganic Chemistry, 1998, 37, 3753-3758.	4.0	36

#	Article	IF	CITATIONS
163	Regioselective Nucleophilic Addition to Vinyl Carbenes (Metallabutadienes):Â Crystal Structure of [Ru{CH(CHCPh2)SC(NMe2)S}(S2CNMe2)(CO)(PPh3)]. Organometallics, 1998, 17, 1916-1918.	2.3	23
164	Organometallic synthesis in ambient temperature chloroaluminate(III) ionic liquids. Ligand exchange reactions of ferrocene. Journal of the Chemical Society Dalton Transactions, 1997, , 3465-3469.	1.1	105
165	Vanadium chloride and chloride oxide complexes in an ambient-temperature ionic liquid. The first use of bis(trichloromethyl) carbonate as a substitute for phosgene in an inorganic system. Journal of the Chemical Society Dalton Transactions, 1996, , 2787.	1.1	16
166	Convenient and General Synthesis of Symmetrical N,N'-Disubstituted Imidazolium Halides. Synthesis, 1996, 1996, 697-698.	2.3	52
167	Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. Journal of the Chemical Society Dalton Transactions, 1995, , 3467.	1.1	304
168	Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids. Journal of the Chemical Society Dalton Transactions, 1994, , 3405.	1.1	274
169	1:1 Imidazolium 7,7',8,8'-Tetracyano-p-quinodimethanide ([TCNQ].bul) Salts: Substituent Control of Solid-State Architecture. Chemistry of Materials, 1994, 6, 1106-1108.	6.7	10
170	A fast atom bombardment mass spectrometric study of room-temperature 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquids. Evidence for the existence of the decachlorotrialuminate(III) anion. Organic Mass Spectrometry, 1993, 28, 759-765.	1.3	69
171	Vanadyl complexes in ambient-temperature ionic liquids. The first x-ray crystal structure of a tetrachlorooxovanadate(IV) salt. Polyhedron, 1993, 12, 2039-2044.	2.2	43
172	Hydrogen-bond acceptor abilities of tetrachlorometalate(II) complexes in ionic liquids. Journal of the Chemical Society Dalton Transactions, 1993, , 2639.	1.1	180
173	Removal of oxide contamination from ambient-temperature chloroaluminate(III) ionic liquids. Journal of the Chemical Society Dalton Transactions, 1993, , 3283.	1.1	11
174	Fast atom bombardment mass spectrometric evdence for the formation of tris{tetrachloroaluminate(III)}metallate(II) anions, [M(AICI4)3]â^, in acidic ambient-temperature ionic liquids. Organic Mass Spectrometry, 1992, 27, 648-649.	1.3	22
175	An Electrochemical Study of the Ruthenium(III) and â€(IV) Hexachlorometallates in a Basic Room Temperature Chloroaluminate Molten Salt. Journal of the Electrochemical Society, 1991, 138, 2590-2594.	2.9	9
176	Upon the hydrogen-bonding ability of the H4 and H5 protons of the imidazolium cation. Structural Chemistry, 1990, 1, 391-394.	2.0	53
177	The structure of halogenometallate complexes dissolved in both basic and acidic room-temperature halogenoaluminate(III) ionic liquids, as determined by EXAFS. Journal of the Chemical Society Chemical Communications, 1990, , 315.	2.0	58
178	Upon the existence of [Al3Cl10]â^' in room temperature chloroaluminate ionic liquids. Organic Mass Spectrometry, 1989, 24, 917-918.	1.3	23
179	The removal of oxide impurities from room temperature halogenoaluminate ionic liquids. Journal of the Chemical Society Chemical Communications, 1987, , 1643.	2.0	9
180	Organic Synthesis. , 0, , 174-288.		7

#	Article	IF	CITATIONS
181	Physicochemical Properties of Ionic Liquids. , 0, , 41-126.		22
182	Molecular Structure and Dynamics. , 0, , 127-173.		0
183	Inorganic Synthesis., 0,, 289-318.		3
184	Polymer Synthesis in Ionic Liquids. , 0, , 319-335.		6
185	Biocatalytic Reactions in Ionic Liquids. , 0, , 336-347.		2
186	Synthesis and Purification of Ionic Liquids. , 0, , 7-40.		16
187	Polymer Synthesis in Ionic Liquids. , 0, , 619-640.		5
188	How do external forces related to mass and charge affect the structures and dynamics of an ionic liquid? . Journal of Chemical Physics, 0, , .	3.0	2