Thomas Welton

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3233457/thomas-welton-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

191	33,395	70	182
papers	citations	h-index	g-index
230	35,660 ext. citations	6.8	8.05
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
191	Pressing matter: why are ionic liquids so viscous?. <i>Chemical Science</i> , 2022 , 13, 2735-2743	9.4	2
190	Effect of the cation structure on the properties of homobaric imidazolium ionic liquids <i>Physical Chemistry Chemical Physics</i> , 2022 ,	3.6	1
189	Extraction of flavonoid compounds from bark using sustainable deep eutectic solvents. <i>Sustainable Chemistry and Pharmacy</i> , 2021 , 24, 100544	3.9	3
188	Sustainability and international chemistry collaboration. <i>National Science Review</i> , 2021 , 8, nwab037	10.8	O
187	Observation of the Pockels Effect in Ionic Liquids and Insights into the Length Scale of Potential-Induced Ordering. <i>Langmuir</i> , 2021 , 37, 5193-5201	4	2
186	Energy and environmental analysis of flavonoids extraction from bark using alternative solvents. Journal of Cleaner Production, 2021 , 308, 127286	10.3	4
185	Investigation of the influence of natural deep eutectic solvents (NaDES) in the properties of chitosan-stabilised films. <i>Materials Advances</i> , 2021 , 2, 3954-3964	3.3	1
184	Targeted modifications in ionic liquids - from understanding to design. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 6993-7021	3.6	24
183	Process Analysis of Ionic Liquid-Based Blends as H2S Absorbents: Search for Thermodynamic/Kinetic Synergies. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2080-2088	8.3	5
182	A review on machine learning algorithms for the ionic liquid chemical space. <i>Chemical Science</i> , 2021 , 12, 6820-6843	9.4	19
181	Curled cation structures accelerate the dynamics of ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 21042-21064	3.6	3
180	Mixing divalent ionic liquids: effects of charge and side-chains. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 4624-4635	3.6	1
179	High throughput study of ionic liquids in controlled environments with FTIR spectroscopic imaging. <i>Journal of Molecular Liquids</i> , 2021 , 337, 116412	6	2
178	Ether functionalisation, ion conformation and the optimisation of macroscopic properties in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 23038-23056	3.6	13
177	MAS NMR Investigation of Molecular Order in an Ionic Liquid Crystal. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 4975-4988	3.4	11
176	Conformational design concepts for anions in ionic liquids Chemical Science, 2020, 11, 6405-6422	9.4	13
175	The effect of structural heterogeneity upon the microviscosity of ionic liquids. <i>Chemical Science</i> , 2020 , 11, 6121-6133	9.4	11

174	Effect of an external electric field on the dynamics and intramolecular structures of ions in an ionic liquid. <i>Journal of Chemical Physics</i> , 2019 , 151, 164503	3.9	9
173	Use of Ionic Liquids for the Biorefinery 2019 , 223-255		
172	On the structural origin of free volume in 1-alkyl-3-methylimidazolium ionic liquid mixtures: a SAXS and Xe NMR study. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 5999-6010	3.6	13
171	On the Carbene-Like Reactions of Imidazolium Acetate Ionic Liquids: Can Theory and Experiments Agree?. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 504-511	3.2	14
170	Ionic liquids: a brief history. <i>Biophysical Reviews</i> , 2018 , 10, 691-706	3.7	412
169	Regenerated Cellulose and Willow Lignin Blends as Potential Renewable Precursors for Carbon Fibers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5903-5910	8.3	26
168	Design of task-specific fluorinated ionic liquids: nanosegregation versus hydrogen-bonding ability in aqueous solutions. <i>Chemical Communications</i> , 2018 , 54, 3524-3527	5.8	12
167	Structure and lifetimes in ionic liquids and their mixtures. <i>Faraday Discussions</i> , 2018 , 206, 219-245	3.6	57
166	Study on Gas Permeation and CO2 Separation through Ionic Liquid-Based Membranes with Siloxane-Functionalized Cations. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 2229-2239	3.9	18
165	Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. <i>Green Chemistry</i> , 2017 , 19, 2051-2075	10	92
164	Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment. <i>Faraday Discussions</i> , 2017 , 202, 331-349	3.6	56
163	Evidence for the spontaneous formation of N-heterocyclic carbenes in imidazolium based ionic liquids. <i>Chemical Communications</i> , 2017 , 53, 11154-11156	5.8	18
162	The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes. <i>Dalton Transactions</i> , 2017 , 46, 12185-12200	4.3	10
161	Ionic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 21556-21564	3.6	15
160	Superbase ionic liquids for effective cellulose processing from dissolution to carbonisation. <i>Green Chemistry</i> , 2017 , 19, 5949-5957	10	33
159	Linking the structures, free volumes, and properties of ionic liquid mixtures. <i>Chemical Science</i> , 2017 , 8, 6359-6374	9.4	47
158	An easy and reliable method for syringyl: guaiacyl ratio measurement. <i>Tappi Journal</i> , 2017 , 16, 145-152	0.5	1
157	A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. <i>Physical Chemistry Chemical Physics</i> , 2017 , 20, 206-213	3.6	75

156	Oxidative Depolymerization of Lignin Using a Novel Polyoxometalate-Protic Ionic Liquid System. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6031-6036	8.3	65
155	Mechanistic insights into lignin depolymerisation in acidic ionic liquids. <i>Green Chemistry</i> , 2016 , 18, 5456-	-5465	75
154	Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 18145-60	3.6	212
153	Basicity and catalytic activity of porous materials based on a (Si,Al)-N framework. <i>Applied Catalysis A: General</i> , 2016 , 520, 157-169	5.1	6
152	Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3339-51	3.6	11
151	A structural investigation of ionic liquid mixtures. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 8608-24	1 3.6	76
150	Lignin oxidation and depolymerisation in ionic liquids. <i>Green Chemistry</i> , 2016 , 18, 834-841	10	94
149	Correction: Determination of Kamlet-Taft parameters for selected solvate ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 19975	3.6	1
148	Solvate Ionic Liquids as Reaction Media for Electrocyclic Transformations. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 913-917	3.2	26
147	A robotic platform for high-throughput electrochemical analysis of chalcopyrite leaching. <i>Green Chemistry</i> , 2016 , 18, 1930-1937	10	7
146	Enhancing the stability of ionic liquid media for cellulose processing: acetal protection or carbene suppression?. <i>Green Chemistry</i> , 2016 , 18, 3758-3766	10	26
145	Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf]. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 16161-8	3.6	20
144	Determination of Kamlet-Taft parameters for selected solvate ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 13153-7	3.6	29
143	Willow Lignin Oxidation and Depolymerization under Low Cost Ionic Liquid. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 5277-5288	8.3	48
142	Hydrogen bonding and Interactions in imidazolium-chloride ionic liquid clusters. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 14437-53	3.6	88
141	Structural changes in lignins isolated using an acidic ionic liquid water mixture. <i>Green Chemistry</i> , 2015 , 17, 5019-5034	10	120
140	Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. <i>Green Chemistry</i> , 2015 , 17, 177	2 & d 73	4341
139	A physicochemical investigation of ionic liquid mixtures. <i>Chemical Science</i> , 2015 , 6, 1101-1114	9.4	140

138	Ionic liquids: not always innocent solvents for cellulose. <i>Green Chemistry</i> , 2015 , 17, 231-243	10	139
137	Ionic Liquids and Organic Reaction Mechanisms 2015 , 209-230		
136	Solvents and sustainable chemistry. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20150502	2.4	163
135	Extended scale for the hydrogen-bond basicity of ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 6593-601	3.6	189
134	The potential of methylsiloxanes as solvents for synthetic chemistry applications. <i>Green Chemistry</i> , 2014 , 16, 1282-1296	10	16
133	Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3238-53	3.6	143
132	Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. <i>Green Chemistry</i> , 2014 , 16, 1617	10	124
131	The importance of timescale for hydrogen bonding in imidazolium chloride ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3675-85	3.6	62
130	Inexpensive ionic liquids: [HSO4] Ebased solvent production at bulk scale. <i>Green Chemistry</i> , 2014 , 16, 3098-3106	10	256
129	A quick, simple, robust method to measure the acidity of ionic liquids. <i>Chemical Communications</i> , 2014 , 50, 7258-61	5.8	20
128	New experimental density data and soft-SAFT models of alkylimidazolium ([C(n)Clm]+) chloride (Cl?), methylsulfate ([MeSOIP), and dimethylphosphate ([MeBOIP) based ionic liquids. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 6206-21	3.4	55
127	The impact of anion electronic structure: similarities and differences in imidazolium based ionic liquids. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 284112	1.8	31
126	On the origin of ionicity in ionic liquids. Ion pairing versus charge transfer. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16880-90	3.6	161
125	Introducing Ionic Liquids 2014 , 11-36		1
124	Heavy Metal Sensing Using Self-Assembled Nanoparticles at a Liquid Liquid Interface. <i>Advanced Optical Materials</i> , 2014 , 2, 966-977	8.1	31
123	Quantized friction across ionic liquid thin films. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 15317-20	3.6	113
122	Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 20480-95	3.6	179
121	Deconstruction of lignocellulosic biomass with ionic liquids. <i>Green Chemistry</i> , 2013 , 15, 550	10	1054

120	Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 378-82	6.4	128
119	Interfacial Behavior of Thin Ionic Liquid Films on Mica. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 5101-5	5 13 181	52
118	A step towards the a priori design of ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 11566-	78 .6	57
117	Mixtures of ionic liquids. <i>Chemical Society Reviews</i> , 2012 , 41, 7780-802	58.5	444
116	Hydrogen bonding in 1-butyl- and 1-ethyl-3-methylimidazolium chloride ionic liquids. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 4921-33	3.4	139
115	Preparation of [Al(hfip)4](-)-based ionic liquids with siloxane-functionalized cations and their physical properties in comparison with their [Tf2N]- analogues. <i>ChemPhysChem</i> , 2012 , 13, 1802-5	3.2	15
114	Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. <i>Green Chemistry</i> , 2012 , 14, 1079	10	32
113	Ionic liquids as media for biomass processing: opportunities and restrictions. <i>Holzforschung</i> , 2011 , 65,	2	18
112	Understanding the polarity of ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 16831-40	3.6	399
111	Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. <i>Chemical Reviews</i> , 2011 , 111, 3508-76	68.1	3373
110	Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid water mixtures. <i>Green Chemistry</i> , 2011 , 13, 2489	10	376
109	Salts dissolved in salts: ionic liquid mixtures. <i>Chemical Science</i> , 2011 , 2, 1491	9.4	164
108	Self-assembly in the electrical double layer of ionic liquids. <i>Chemical Communications</i> , 2011 , 47, 6572-4	5.8	214
107	The effect of the ionic liquid anion in the pretreatment of pine wood chips. <i>Green Chemistry</i> , 2010 , 12, 672	10	273
106	2010,		431
105	Understanding siloxane functionalised ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 2018.	- 2;9 6	35
104	Appendix A. Properties, Purification, and Use of Organic Solvents 2010 , 549-586		5
103	Solute-Solvent Interactions 2010 , 7-64		4

102	Classification of Solvents 2010 , 65-106		2
101	Solvent Effects on the Position of Homogeneous Chemical Equilibria 2010 , 107-163		4
100	Solvent Effects on the Rates of Homogeneous Chemical Reactions 2010 , 165-357		2
99	Solvent Effects on the Absorption Spectra of Organic Compounds 2010 , 359-424		11
98	Empirical Parameters of Solvent Polarity 2010 , 425-508		18
97	Solvents and Green Chemistry 2010 , 509-548		2
96	Figure and Table Credits 2010 , 675-675		
95	How Polar are Ionic Liquids?. ECS Transactions, 2009, 16, 33-38	1	8
94	Esterification in Ionic Liquids: The Influence of Solvent Basicity. ECS Transactions, 2009, 16, 103-106	1	
93	In Search of an "Ionic Liquid Effect". ECS Transactions, 2009, 16, 81-87	1	5
92	A theoretical study of the solvent effect on Diels-Alder reaction in room temperature ionic liquids using a supermolecular approach. <i>Theoretical Chemistry Accounts</i> , 2009 , 123, 347-352	1.9	45
91	Charge screening in the S(N)2 reaction of charged electrophiles and charged nucleophiles: an ionic liquid effect. <i>Journal of Organic Chemistry</i> , 2009 , 74, 1864-8	4.2	88
90	An old reaction in new media: kinetic study of a platinum(II) substitution reaction in ionic liquids. <i>Dalton Transactions</i> , 2009 , 4115-21	4.3	24
89	Nucleophilic Reactions at Cationic Centers in Ionic Liquids and Molecular Solvents. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 638-644	3.9	60
88	Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture. <i>Journal of Chemical Physics</i> , 2008 , 129, 104505	3.9	123
87	Esterification in ionic liquids: the influence of solvent basicity. <i>Journal of Organic Chemistry</i> , 2008 , 73, 5585-8	4.2	55
87			55 120

84	Epoxidation of alkenes by Oxonellising 2-alkyl-3,4-dihydroisoquinolinium salts as catalysts in ionic liquids. <i>Journal of Molecular Catalysis A</i> , 2008 , 279, 148-152		23
83	Ionic liquids as designer solvents for nucleophilic aromatic substitutions. <i>Organic Letters</i> , 2007 , 9, 5247-	50 2	132
82	The chemistry of East Asian lacquer: A review of the scientific literature. <i>Studies in Conservation</i> , 2007 , 52, 29-40	0.6	10
81	Decolorization of ionic liquids for spectroscopy. <i>Analytical Chemistry</i> , 2007 , 79, 758-64	7.8	163
80	Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. <i>Chemistry - A European Journal</i> , 2006 , 12, 6762-75	4.8	398
79	Cooperativity in ionic liquids. <i>Journal of Chemical Physics</i> , 2006 , 124, 174506	3.9	146
78	Using Kamlet-Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids. <i>Journal of Organic Chemistry</i> , 2006 , 71, 8847-53	4.2	135
77	Synthesis and structure of novel organocycloborates. <i>Chemistry - A European Journal</i> , 2005 , 12, 600-6	4.8	28
76	Ionic liquid-in-oil microemulsions. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7302-3	16.4	357
75	Understanding Reactions in Ionic Liquids. <i>ACS Symposium Series</i> , 2005 , 218-232	0.4	3
74	Palladium Catalyzed Reactions in Ionic Liquids. Advances in Organometallic Chemistry, 2004, 51, 251-284	3.8	37
73	N-donor complexes of palladium as catalysts for Suzuki cross-coupling reactions in ionic liquids. <i>Journal of Molecular Catalysis A</i> , 2004 , 214, 27-32		65
72	Ionic liquids in catalysis. <i>Coordination Chemistry Reviews</i> , 2004 , 248, 2459-2477	23.2	1312
71	Novel organocycloborates via Grignard reagents. Chemical Communications, 2004, 1738-9	5.8	7
70	Solvent strength of ionic liquid/CO2 mixtures. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 3280	3.6	76
69	Precise temperature control in microfluidic devices using Joule heating of ionic liquids. <i>Lab on A Chip</i> , 2004 , 4, 417-9	7.2	98
68	Chiral ionic liquids as stationary phases in gas chromatography. <i>Analytical Chemistry</i> , 2004 , 76, 6819-22	7.8	260
67	Nucleophilicity in ionic liquids. 3. Anion effects on halide nucleophilicity in a series of 1-butyl-3-methylimidazolium ionic liquids. <i>Journal of Organic Chemistry</i> , 2004 , 69, 5986-92	4.2	107

(2001-2004)

66	Manipulating solute nucleophilicity with room temperature ionic liquids. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11549-55	16.4	205
65	SolventBolute interactions in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 2790-2794	3.6	701
64	Novel palladium imidazole catalysts for Suzuki cross-coupling reactions. <i>Journal of Molecular Catalysis A</i> , 2003 , 206, 77-82		75
63	Palladium-Catalyzed Suzuki Cross-Coupling Reactions in Ambient Temperature Ionic Liquids: Evidence for the Importance of Palladium Imidazolylidene Complexes. <i>Organometallics</i> , 2003 , 22, 5350-	5387	128
62	Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. <i>Chemical Communications</i> , 2003 , 2418-9	5.8	151
61	Ionic Liquids as Solvents for Organic Synthesis 2003 , 457-464		1
60	Nucleophilicity in ionic liquids. 2.(1) Cation effects on halide nucleophilicity in a series of bis(trifluoromethylsulfonyl)imide ionic liquids. <i>Journal of Organic Chemistry</i> , 2002 , 67, 8855-61	4.2	181
59	Electrochemistry of Vanadium Oxides and Oxyhalides in Chloroaluminate Room Temperature Ionic Liquids: Formation of a New Ionic Liquid. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A371	3.9	22
58	Dynamic Supramolecular Chemistry: The Role of Hydrogen Bonding in Controlling the Selectivity of Diels-Alder Reactions in Room-Temperature Ionic Liquids. <i>ACS Symposium Series</i> , 2002 , 241-246	0.4	2
57	A highly selective arene hydrogenation catalyst that operates in ionic liquid. <i>Journal of the American Chemical Society</i> , 2002 , 124, 9334-5	16.4	58
56	Characterizing ionic liquids on the basis of multiple solvation interactions. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14247-54	16.4	948
55	The role of hydrogen bonding in controlling the selectivity of DielsAlder reactions in room-temperature ionic liquids. <i>Green Chemistry</i> , 2002 , 4, 517-520	10	263
54	Palladium-Catalyzed Carbon Carbon Coupling Reactions in Room-Temperature Ionic Liquids. <i>ACS Symposium Series</i> , 2002 , 310-320	0.4	1
53	The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts. <i>Green Chemistry</i> , 2002 , 4, 97-102	10	130
52	Increased catalytic productivity for nanofiltration-coupled Heck reactions using highly stable catalyst systems. <i>Green Chemistry</i> , 2002 , 4, 319-324	10	41
51	Synthesis and Catalysis in Room-Temperature Ionic Liquids 2002 , 345-355		
50	Electrospray mass spectrometry of [Ru4(B-C6H6)4(OH)4]4+: first direct evidence for the persistence of the cubane unit in solution and its role as a precatalyst in the hydrogenation of benzene. <i>Inorganic Chemistry Communication</i> , 2001 , 4, 571-573	3.1	15
49	A study of halide nucleophilicity in ionic liquids. <i>Perkin Transactions II RSC</i> , 2001 , 2267-2270		101

48	In Situ Formation of Mixed Phosphinelimidazolylidene Palladium Complexes in Room-Temperature Ionic Liquids. <i>Organometallics</i> , 2001 , 20, 3848-3850	3.8	149
47	A temperature-controlled reversible ionic liquid - water two phase - single phase protocol for hydrogenation catalysis. <i>Canadian Journal of Chemistry</i> , 2001 , 79, 705-708	0.9	63
46	Molecular states of water in room temperature ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 5192-5200	3.6	1264
45	1-butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)4]: a catalytically active organometallic ionic liquid. <i>Chemical Communications</i> , 2001 , 1862-3	5.8	105
44	Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures. <i>Chemical Communications</i> , 2000 , 2047-2048	5.8	342
43	Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids. <i>Chemical Communications</i> , 2000 , 1249-1250	5.8	220
42	Unprecedented coupling of vinylidene and allenylidene ligands with dithiocarbamates: X-ray structure of [Ru{C(?C?CPh2)SC(NMe2)S}(S2CNMe2)(CO)(PPh3)]. <i>Journal of Organometallic Chemistry</i> , 1999 , 578, 264-267	2.3	32
41	Diels-Alder reactions in room-temperature ionic liquids. <i>Tetrahedron Letters</i> , 1999 , 40, 793-796	2	342
40	Hydrogenation of non-activated alkenes catalysed by water-soluble ruthenium carbonyl clusters using a biphasic protocol. <i>Journal of Molecular Catalysis A</i> , 1999 , 150, 71-75		27
39	Metal-containing dendritic polymers. <i>Polyhedron</i> , 1999 , 18, 3575-3591	2.7	73
38	Chloroaluminate(III) ionic liquid mediated synthesis of transition metal@yclophane; complexes: their role as solvent and Lewis acid catalyst. <i>Journal of Organometallic Chemistry</i> , 1999 , 573, 292-298	2.3	23
37	Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. <i>Chemical Reviews</i> , 1999 , 99, 207	I <i>-2</i> :8.84	10712
36	Control of intramolecular acetatelllenylidene coupling by spectator co-ligand lacidity. <i>Journal of the Chemical Society Dalton Transactions</i> , 1999 , 1911-1912		23
35	Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. <i>Chemical Communications</i> , 1999 , 25-26	5.8	199
34	AlkylideneDithiocarbamate coupling@rystal structure of [Ru{D-CH(C6H4OMe-4)SC(NC4H8)S}{D-S2CNC4H8}(CO)(PPh3)]. <i>New Journal of Chemistry</i> , 1998 , 22, 311-314	3.6	10
33	Dithiocarbamate-Functionalized Dendrimers as Ligands for Metal Complexes. <i>Inorganic Chemistry</i> , 1998 , 37, 3753-3758	5.1	30
32	Regioselective Nucleophilic Addition to Vinyl Carbenes (Metallabutadienes): Crystal Structure of [Ru{CH(CHCPh2)SC(NMe2)S}(S2CNMe2)(CO)(PPh3)]. <i>Organometallics</i> , 1998 , 17, 1916-1918	3.8	20
31	Organometallic synthesis in ambient temperature chloroaluminate(III) ionic liquids. Ligand exchange reactions of ferrocene. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 3465-3469		99

30	Convenient and General Synthesis of Symmetrical N,NEDisubstituted Imidazolium Halides. Synthesis, 1996 , 1996, 697-698	2.9	44
29	Vanadium chloride and chloride oxide complexes in an ambient-temperature ionic liquid. The first use of bis(trichloromethyl) carbonate as a substitute for phosgene in an inorganic system. <i>Journal of the Chemical Society Dalton Transactions</i> , 1996 , 2787		10
28	Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. <i>Journal of the Chemical Society Dalton Transactions</i> , 1995 , 3467		287
27	Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids. <i>Journal of the Chemical Society Dalton Transactions</i> , 1994 , 3405		257
26	1:1 Imidazolium 7,7',8,8'-Tetracyano-p-quinodimethanide ([TCNQ].bul) Salts: Substituent Control of Solid-State Architecture. <i>Chemistry of Materials</i> , 1994 , 6, 1106-1108).6	9
25	Hydrogen-bond acceptor abilities of tetrachlorometalate(II) complexes in ionic liquids. <i>Journal of the Chemical Society Dalton Transactions</i> , 1993 , 2639		171
24	Removal of oxide contamination from ambient-temperature chloroaluminate(III) ionic liquids. Journal of the Chemical Society Dalton Transactions, 1993 , 3283		8
23	A fast atom bombardment mass spectrometric study of room-temperature 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquids. Evidence for the existence of the decachlorotrialuminate(III) anion. <i>Organic Mass Spectrometry</i> , 1993 , 28, 759-765		55
22	Vanadyl complexes in ambient-temperature ionic liquids. The first x-ray crystal structure of a tetrachlorooxovanadate(IV) salt. <i>Polyhedron</i> , 1993 , 12, 2039-2044	2.7	35
21	Fast atom bombardment mass spectrometric evdence for the formation of tris{tetrachloroaluminate(III)}metallate(II) anions, [M(AICI4)3][lin acidic ambient-temperature ionic liquids. <i>Organic Mass Spectrometry</i> , 1992 , 27, 648-649		20
20	An Electrochemical Study of the Ruthenium(III) and -(IV) Hexachlorometallates in a Basic Room Temperature Chloroaluminate Molten Salt. <i>Journal of the Electrochemical Society</i> , 1991 , 138, 2590-2594	3.9	7
19	Upon the hydrogen-bonding ability of the H4 and H5 protons of the imidazolium cation. <i>Structural Chemistry</i> , 1990 , 1, 391-394	1.8	47
18	The structure of halogenometallate complexes dissolved in both basic and acidic room-temperature halogenoaluminate(III) ionic liquids, as determined by EXAFS. <i>Journal of the Chemical Society Chemical Communications</i> , 1990 , 315		46
17	Upon the existence of [Al3Cl10]In room temperature chloroaluminate ionic liquids. <i>Organic Mass Spectrometry</i> , 1989 , 24, 917-918		19
16	The removal of oxide impurities from room temperature halogenoaluminate ionic liquids. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 1643		6
15	Industrial Applications of Ionic Liquids663-687		7
14	Physicochemical Properties57-174		9
13	Organic Synthesis 265-568		4

12	Synthesis and Purification7-55	9
11	Polymer Synthesis in Ionic Liquids619-640	2
10	Inorganic Synthesis569-617	1
9	Biocatalytic Reactions in Ionic Liquids641-661	2
8	Molecular Structure and Dynamics175-264	1
7	Organic Synthesis174-288	2
6	Physicochemical Properties of Ionic Liquids41-126	15
65	Physicochemical Properties of Ionic Liquids41-126 Molecular Structure and Dynamics127-173	15
		15
5	Molecular Structure and Dynamics127-173	
5	Molecular Structure and Dynamics127-173 Inorganic Synthesis289-318	1