Darja A Kassim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3233438/publications.pdf

Version: 2024-02-01

1684188 1588992 40 135 5 8 citations g-index h-index papers 48 48 48 35 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluxed Local Sintersâ€"Agglomerated Iron Ore Mono Raw Material for Blast-Furnace Smelting. Steel in Translation, 2021, 51, 186-194.	0.3	2
2	Development of Supplements Prevention System in Oxygen Converter Process in Order to Increase the Economic Efficiency of Steel Melting. SHS Web of Conferences, 2021, 100, 06001.	0.2	0
3	DEVELOPMENT OF TECHNOLOGY FOR THE PRODUCTION OF IRON ORE MONORAW FOR BLAST FURNACE SMELTING. Fundamentalʹnye I Prikladnye Problemy Äernoj Metallurgii, 2021, , 69-77.	0.1	O
4	Analysis of complex properties of manga-nese ores and sludges as well as possibilities of their pelletizing for obtaining man-ganese ferroalloys., 2021,, 111-120.		0
5	Possibilities for Normalization of the Gasdynamic Mode of Blast Melting with Pulverized Coal Injection. Steel in Translation, 2020, 50, 467-472.	0.3	5
6	The potential of using of alkaline earth bentonite clays of Ukraine in the production of iron ore pellets. Theory and Practice of Metallurgy, 2020, 1,2020, 36-43.	0.1	0
7	Study of the influence of different types of bentonite clays on the quality indicators of pellets. Theory and Practice of Metallurgy, 2020, 2,2020, 38-43.	0.1	O
8	Coke Quality and Blast-Furnace Performance. Coke and Chemistry, 2018, 61, 12-18.	0.4	6
9	Influence of the Quality of Iron Ore and Coke on Blast-Furnace Performance. Steel in Translation, 2018, 48, 793-801.	0.3	2
10	Influence of Coke Quality on the Efficiency in Blast Furnaces of Different Size. Coke and Chemistry, 2018, 61, 254-261.	0.4	1
11	Uniformity of Blast-Furnace Parameters over the Perimeter. Steel in Translation, 2018, 48, 179-184.	0.3	5
12	Influence of the Stability of Coke Quality on Its Consumption in the Blast Furnace. Coke and Chemistry, 2018, 61, 334-337.	0.4	2
13	Improving the Preparation of Coking Batch. Coke and Chemistry, 2018, 61, 171-178.	0.4	1
14	Coordination of the Batch Distribution at the Blast-Furnace Mouth and the Gas-Flux Distribution in the Hearth. Steel in Translation, 2018, 48, 372-375.	0.3	3
15	Improvement of the Uniformity of Blast Distribution over the Circumference of Blast-Furnace Hearth. Metallurgist, 2018, 62, 119-124.	0.6	5
16	Improvement in Blast-Furnace Performance by Using a New Form of Iron Ore. Steel in Translation, 2018, 48, 39-44.	0.3	5
17	Determining the gas trajectory in blast-furnace injection of pulverized coal. Steel in Translation, 2017, 47, 257-262.	0.3	4
18	Changes in the petrographic composition of coal batch on crushing. Coke and Chemistry, 2017, 60, 55-58.	0.4	1

#	Article	IF	CITATIONS
19	Total energy of the hearth gas in pulverized-coal injection. Steel in Translation, 2017, 47, 190-197.	0.3	9
20	Blast-furnace operation with pulverized-coal injection and with chunk anthracite. Steel in Translation, 2017, 47, 469-472.	0.3	6
21	Blast-furnace operation with wet blast. Steel in Translation, 2017, 47, 544-549.	0.3	1
22	Pulverized-coal injection in a 5000-m3 blast furnace. Steel in Translation, 2017, 47, 675-681.	0.3	9
23	Improvement of technology and equipment for the production of iron ore raw materials for modern blast-furnace smelting. , $2017, , .$		4
24	Influence of magnetite and its enrichment on the characteristics of unfluxed roasted pellets. Steel in Translation, 2016, 46, 206-212.	0.3	1
25	Technological Aspects of the Use of Lump Anthracite in Blast-Furnace Smelting. Metallurgist, 2016, 60, 142-149.	0.6	2
26	Metallurgical characteristics of unfluxed pellets produced from concentrates with different mineral content. Steel in Translation, 2016, 46, 419-427.	0.3	2
27	Theoretical and practical bases of lump anthracite use in blast furnace smelting. , 2016, , .		1
28	Improved iron-ore sinter for blast furnaces. Steel in Translation, 2015, 45, 270-274.	0.3	5
29	Influence of the batch properties and coking technology on the granulometric composition of coke. Coke and Chemistry, 2014, 57, 398-404.	0.4	1
30	Comparison of blast-furnace efficiency with pulverized-coal injection and with anthracite chunks. Steel in Translation, 2014, 44, 34-37.	0.3	2
31	Optimizing the composition of coal batch. Coke and Chemistry, 2014, 57, 18-23.	0.4	3
32	Influence of the high content of Zh coal in coking batch on the coke quality. Coke and Chemistry, 2013, 56, 95-99.	0.4	1
33	Quality fluctuations of coking coal. Coke and Chemistry, 2013, 56, 1-6.	0.4	3
34	Changes in granulometric composition of blast-furnace coke. Coke and Chemistry, 2013, 56, 456-460.	0.4	3
35	Ensuring stable quality of blast-furnace coke. Coke and Chemistry, 2012, 55, 304-308.	0.4	5
36	Influence of the moisture content of coal batch on coke quality. Coke and Chemistry, 2012, 55, 329-334.	0.4	5

#	Article	IF	CITATIONS
37	Coke quality and optimization of batch composition. Coke and Chemistry, 2012, 55, 448-452.	0.4	4
38	Assessing the quality of blast-furnace coke. Steel in Translation, 2011, 41, 589-592.	0.3	4
39	Influence of the reactivity of coke on blast-furnace performance. Coke and Chemistry, 2011, 54, 47-52.	0.4	8
40	Preparation of coking batch. Coke and Chemistry, 2011, 54, 271-286.	0.4	11