List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3233429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends in Endocrinology and Metabolism, 2022, 33, 218-229.	3.1	15
2	Lack of Annexin A6 Exacerbates Liver Dysfunction and Reduces Lifespan of Niemann-Pick Type C Protein–Deficient Mice. American Journal of Pathology, 2021, 191, 475-486.	1.9	3
3	Lipid droplets and the host–pathogen dynamic: FATal attraction?. Journal of Cell Biology, 2021, 220, .	2.3	31
4	ContactJ: Lipid droplets-mitochondria contacts characterization through fluorescence microscopy and image analysis. F1000Research, 2021, 10, 263.	0.8	2
5	Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cellular and Molecular Life Sciences, 2020, 77, 2839-2857.	2.4	54
6	Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370, .	6.0	245
7	Mammalian histones facilitate antimicrobial synergy by disrupting the bacterial proton gradient and chromosome organization. Nature Communications, 2020, 11, 3888.	5.8	43
8	Novel contact sites between lipid droplets, early endosomes, and the endoplasmic reticulum. Journal of Lipid Research, 2020, 61, 1364.	2.0	9
9	Non-caveolar caveolins â \in " duties outside the caves. Journal of Cell Science, 2020, 133, .	1.2	35
10	Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Seminars in Cell and Developmental Biology, 2020, 108, 33-46.	2.3	37
11	Annexin A6 Is Critical to Maintain Glucose Homeostasis and Survival During Liver Regeneration in Mice. Hepatology, 2020, 72, 2149-2164.	3.6	20
12	The Myxobacterial Metabolite Soraphen A Inhibits HIV-1 by Reducing Virus Production and Altering Virion Composition. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	8
13	ROCK1 is a novel Rac1 effector to regulate tubular endocytic membrane formation during clathrin-independent endocytosis. Scientific Reports, 2017, 7, 6866.	1.6	22
14	Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports, 2016, 6, 27351.	1.6	131
15	Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease. American Journal of Pathology, 2016, 186, 517-523.	1.9	9
16	Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration. Journal of Biological Chemistry, 2016, 291, 1320-1335.	1.6	43
17	AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nature Communications, 2015, 6, 7176.	5.8	215
18	Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites. Journal of Cell Biology, 2014, 204, 635-646.	2.3	386

#	Article	IF	CITATIONS
19	Annexins and Endosomal Signaling. Methods in Enzymology, 2014, 535, 55-74.	0.4	8
20	Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries. Cell Reports, 2014, 7, 883-897.	2.9	104
21	Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association. FASEB Journal, 2014, 28, 3023-3037.	0.2	17
22	Cell-to-Cell Heterogeneity in Lipid Droplets Suggests a Mechanism to Reduce Lipotoxicity. Current Biology, 2013, 23, 1489-1496.	1.8	152
23	Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. Journal of Cell Biology, 2013, 203, 985-1001.	2.3	257
24	A novel role for lipid droplets in the organismal antibacterial response. ELife, 2012, 1, e00003.	2.8	98
25	Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology, 2012, 55, 1574-1584.	3.6	82
26	Mitochondrial Cholesterol: A Connection Between Caveolin, Metabolism, and Disease. Traffic, 2011, 12, 1483-1489.	1.3	45
27	Rac1 and Calmodulin Interactions Modulate Dynamics of ARF6â€Dependent Endocytosis. Traffic, 2011, 12, 1879-1896.	1.3	26
28	Caveolin-1 Deficiency Causes Cholesterol-Dependent Mitochondrial Dysfunction and Apoptotic Susceptibility. Current Biology, 2011, 21, 681-686.	1.8	175
29	Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis. Journal of Biological Chemistry, 2011, 286, 35299-35307.	1.6	32
30	Ras/Mitogen-activated Protein Kinase (MAPK) Signaling Modulates Protein Stability and Cell Surface Expression of Scavenger Receptor SR-BI. Journal of Biological Chemistry, 2011, 286, 23077-23092.	1.6	19
31	Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123.	0.9	59
32	Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123.	0.9	36
33	Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington's disease. Journal of Neurochemistry, 2010, 115, 153-167.	2.1	76
34	Differential involvement of H- and K-Ras in Raf-1 activation determines the role of calmodulin in MAPK signaling. Cellular Signalling, 2009, 21, 1827-1836.	1.7	9
35	Annexin A6 inhibits Ras signalling in breast cancer cells. Oncogene, 2009, 28, 363-377.	2.6	65
36	Hydrophobic and Basic Domains Target Proteins to Lipid Droplets. Traffic, 2009, 10, 1785-1801.	1.3	67

#	Article	IF	CITATIONS
37	Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane. Biochemical Journal, 2009, 420, 373-381.	1.7	24
38	Calmodulin modulates H-Ras mediated Raf-1 activation. Cellular Signalling, 2008, 20, 1092-1103.	1.7	16
39	Annexin A6-induced Inhibition of Cytoplasmic Phospholipase A2 Is Linked to Caveolin-1 Export from the Golgi. Journal of Biological Chemistry, 2008, 283, 10174-10183.	1.6	43
40	Protein Kinase CÎ [^] and Calmodulin Regulate Epidermal Growth Factor Receptor Recycling from Early Endosomes through Arp2/3 Complex and Cortactin. Molecular Biology of the Cell, 2008, 19, 17-29.	0.9	41
41	Annexin A6â€Induced Alterations in Cholesterol Transport and Caveolin Export from the Golgi Complex. Traffic, 2007, 8, 1568-1589.	1.3	95
42	Involvement of Targeting and Scaffolding Proteins in the Regulation of the EGFR/Ras/MAPK Pathway in Oncogenesis. Current Signal Transduction Therapy, 2006, 1, 147-167.	0.3	9
43	Identification and Characterization of Associated with Lipid Droplet Protein 1: A Novel Membrane-Associated Protein That Resides on Hepatic Lipid Droplets. Traffic, 2006, 7, 1254-1269.	1.3	179
44	Inhibition of H-Ras and MAPK is compensated by PKC-dependent pathways in annexin A6 expressing cells. Cellular Signalling, 2006, 18, 1006-1016.	1.7	35
45	Caveolin-1 Is Essential for Liver Regeneration. Science, 2006, 313, 1628-1632.	6.0	235
46	Annexin A6 stimulates the membrane recruitment of p120GAP to modulate Ras and Raf-1 activity. Oncogene, 2005, 24, 5809-5820.	2.6	84
47	Cholesterol and Fatty Acids Regulate Dynamic Caveolin Trafficking through the Golgi Complex and between the Cell Surface and Lipid Bodies. Molecular Biology of the Cell, 2005, 16, 2091-2105.	0.9	184
48	Dynamic and Regulated Association of Caveolin with Lipid Bodies: Modulation of Lipid Body Motility and Function by a Dominant Negative Mutant. Molecular Biology of the Cell, 2004, 15, 99-110.	0.9	185
49	Intracellular trafficking during liver regeneration. Journal of Hepatology, 2004, 40, 132-139.	1.8	7
50	Inhibition of Lipid Raft-dependent Signaling by a Dystrophy-associated Mutant of Caveolin-3. Journal of Biological Chemistry, 2002, 277, 17944-17949.	1.6	43
51	Changes of skeletal muscle proteases activities during a chronic low-frequency stimulation period. Pflugers Archiv European Journal of Physiology, 2001, 442, 745-751.	1.3	6
52	A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance. Journal of Cell Biology, 2001, 152, 1057-1070.	2.3	294
53	EGF triggers caveolin redistribution from the plasma membrane to the early/sorting endocytic compartment of hepatocytes. Cellular Signalling, 2000, 12, 537-540.	1.7	13
54	Epidermal Growth Factor-mediated Caveolin Recruitment to Early Endosomes and MAPK Activation. Journal of Biological Chemistry, 2000, 275, 30566-30572.	1.6	47

#	Article	IF	CITATIONS
55	Cellubrevin Is Present in the Basolateral Endocytic Compartment of Hepatocytes and Follows the Transcytotic Pathway after IgA Internalization. Journal of Biological Chemistry, 2000, 275, 7910-7917.	1.6	19
56	Late Endocytic Compartments Are Major Sites of Annexin VI Localization in NRK Fibroblasts and Polarized WIF-B Hepatoma Cells. Experimental Cell Research, 2000, 257, 33-47.	1.2	42
57	The ?early-sorting? endocytic compartment of rat hepatocytes is involved in the intracellular pathway of caveolin-1 (VIP-21). Hepatology, 1999, 29, 1848-1857.	3.6	62
58	Dissection of the multifunctional "receptor-recycling―endocytic compartment of hepatocytes. Hepatology, 1999, 30, 1115-1120.	3.6	18
59	Isolated endosomes from quiescent rat liver contain the signal transduction machinery. FEBS Letters, 1998, 441, 34-38.	1.3	92
60	Identification and distribution of proteins in isolated endosomal fractions of rat liver: involvement in endocytosis, recycling and transcytosis. Biochemical Journal, 1997, 323, 435-443.	1.7	42
61	Identification of cytoskeleton-associated proteins in isolated rat liver endosomes. Biochemical Journal, 1997, 327, 741-746.	1.7	70
62	Membrane transport in rat liver endocytic pathways: Preparation, biochemical properties and functional roles of hepatic endosomes. Electrophoresis, 1997, 18, 2548-2557.	1.3	20
63	ContactJ: Characterization of lipid droplet-mitochondrial contacts using fluorescence microscopy and image analysis. F1000Research, 0, 10, 263.	0.8	1
64	Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5