Ya-Qin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/323325/publications.pdf Version: 2024-02-01

<u> Υλ-ΟΙΝ ΖΗΛΝΟ</u>

#	Article	IF	CITATIONS
1	Bifunctional additive phenyl vinyl sulfone for boosting cyclability of lithium metal batteries. Green Chemical Engineering, 2023, 4, 49-56.	3.3	2
2	Advanced Nonflammable Localized High oncentration Electrolyte For High Energy Density Lithium Battery. Energy and Environmental Materials, 2022, 5, 1294-1302.	7.3	24
3	<scp>Exâ€situ</scp> catalytic fast pyrolysis of <scp>lowâ€rank</scp> coal over <scp>HZSM</scp> â€5 and modified Mg/ <scp>HZSM</scp> â€5 catalysts. International Journal of Energy Research, 2022, 46, 891-899.	2.2	3
4	Colorless BHET obtained from PET by modified mesoporous catalyst ZnO/SBA-15. Chemical Engineering Science, 2022, 248, 117109.	1.9	28
5	State of the art of ionic liquidâ€modified adsorbents for <scp>CO₂</scp> capture and separation. AICHE Journal, 2022, 68, e17500.	1.8	33
6	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	11.1	68
7	Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Materials, 2022, 44, 93-103.	9.5	77
8	Unraveling the Synergistic Coupling Mechanism of Li ⁺ Transport in an "lonogelâ€in eramic― Hybrid Solid Electrolyte for Rechargeable Lithium Metal Battery. Advanced Functional Materials, 2022, 32, 2108706.	7.8	38
9	Pd-promoted heteropolyacid on mesoporous zirconia as a stable and bifunctional catalyst for oxidation of thiophenes. Fuel, 2022, 310, 122462.	3.4	7
10	Highly Efficient Electrocatalytic CO ₂ Reduction to C ₂₊ Products on a Poly(ionic liquid)â€Based Cu ⁰ –Cu ^I Tandem Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	77
11	Elucidating the Zeolite Particle Size Effect on Butene/Isobutane Alkylation. Industrial & Engineering Chemistry Research, 2022, 61, 1032-1043.	1.8	6
12	Developing and Regenerating Cofactors for Sustainable Enzymatic CO2 Conversion. Processes, 2022, 10, 230.	1.3	13
13	Construction of stable SEI film on Si@C high-loading electrodes by dimethoxydimethylsilane electrolyte additives. Ionics, 2022, 28, 1625-1634.	1.2	2
14	Acylamido-based anion-functionalized ionic liquids for efficient synthesis of poly(isosorbide) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.1) Țf 50 222 T
15	Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. Jacs Au, 2022, 2, 543-561.	3.6	42
16	Principles and strategies for green process engineering. Green Chemical Engineering, 2022, 3, 1-4.	3.3	10
17	Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy and Environmental Science, 2022, 15, 2084-2095.	15.6	73

18	Synergistic Effect of TMSPi and FEC in Regulating the Electrode/Electrolyte Interfaces in Nickel-Rich Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11517-11527.	4.0)	24
----	--	-----	---	----

#	Article	IF	CITATIONS
19	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	11.1	1
20	Vertically Heterostructured Solid Electrolytes for Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	23
21	Ionic Liquidâ€Based Redox Active Electrolytes for Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	40
22	Natural Deep Eutectic Solvents Enhanced Electro-Enzymatic Conversion of CO2 to Methanol. Frontiers in Chemistry, 2022, 10, .	1.8	4
23	Cobalt-doped hierarchical porous carbon materials with spherical chrysanthemum-like structures that are derived from the PVP-assisted synthesis of metal organic frameworks for advanced Li-S batteries. Journal of Alloys and Compounds, 2022, 918, 165741.	2.8	5
24	LiNO3 and TMP enabled high voltage room-temperature solid-state lithium metal battery. Chemical Engineering Journal, 2022, 448, 137743.	6.6	12
25	Highâ€Performance Rechargeable Aluminumâ€lon Batteries Enabled by Composite FeF ₃ @ Expanded Graphite Cathode and Carbon Nanotubeâ€Modified Separator. Advanced Energy Materials, 2022, 12, .	10.2	12
26	High CO2 absorption capacity of metal-based ionic liquids: A molecular dynamics study. Green Energy and Environment, 2021, 6, 253-260.	4.7	60
27	Phosphorus-Based Ionic Liquid as Dual Function Promoter Oriented Synthesis of Efficient VPO Catalyst for Selective Oxidation of n-butane. Catalysis Letters, 2021, 151, 255-266.	1.4	14
28	Stimuliâ€Responsive Ionic Liquids and the Regulation of Aggregation Structure and Phase Behaviorâ€. Chinese Journal of Chemistry, 2021, 39, 729-744.	2.6	16
29	Kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. Chemical Engineering Journal, 2021, 421, 127832.	6.6	6
30	Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy and Environmental Science, 2021, 14, 672-687.	15.6	188
31	Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Materials Chemistry Frontiers, 2021, 5, 1771-1794.	3.2	34
32	lonic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy and Environment, 2021, 6, 314-328.	4.7	108
33	Efficient synthesis of isosorbide-based polycarbonate with scalable dicationic ionic liquid catalysts by balancing the reactivity of the <i>endo</i> -OH and <i>exo</i> -OH. Green Chemistry, 2021, 23, 973-982.	4.6	24
34	NH3 separation membranes with self-assembled gas highways induced by protic ionic liquids. Chemical Engineering Journal, 2021, 421, 127876.	6.6	23
35	Synthesis of bio-based polycarbonate <i>via</i> one-step melt polycondensation of isosorbide and dimethyl carbonate by dual site-functionalized ionic liquid catalysts. Green Chemistry, 2021, 23, 447-456.	4.6	16
36	Lithium slurry flow cell, a promising device for the future energy storage. Green Energy and Environment, 2021, 6, 5-8.	4.7	24

#	Article	IF	CITATIONS
37	Molecular thermodynamic understanding of transport behavior of <scp>CO₂</scp> at the ionic liquidsâ€electrode interface. AICHE Journal, 2021, 67, e17060.	1.8	12
38	Ultralong cycling and wide temperature range of lithium metal batteries enabled by solid polymer electrolytes interpenetrated with a poly(liquid crystal) network. Journal of Materials Chemistry A, 2021, 9, 6232-6241.	5.2	33
39	lonozyme: ionic liquids as solvent and stabilizer for efficient bioactivation of CO ₂ . Green Chemistry, 2021, 23, 6990-7000.	4.6	13
40	Encapsulation of multiple enzymes in a metal–organic framework with enhanced electro-enzymatic reduction of CO ₂ to methanol. Green Chemistry, 2021, 23, 2362-2371.	4.6	51
41	A paradigm for the efficient synthesis of bio-based polycarbonate with deep eutectic solvents as catalysts by inhibiting the degradation of molecular chains. Green Chemistry, 2021, 23, 4134-4143.	4.6	2
42	Construction of a PPIL@COF core–shell composite with enhanced catalytic activity for CO ₂ conversion. Green Chemistry, 2021, 23, 2411-2419.	4.6	47
43	Insights into the electrochemical degradation of phenolic lignin model compounds in a protic ionic liquid–water system. Green Chemistry, 2021, 23, 1665-1677.	4.6	33
44	Sterically controlling 2-carboxylated imidazolium salts for one-step efficient hydration of epoxides into 1,2-diols. Green Chemistry, 2021, 23, 2992-3000.	4.6	5
45	lonophobic nanopores enhancing the capacitance and charging dynamics in supercapacitors with ionic liquids. Journal of Materials Chemistry A, 2021, 9, 15985-15992.	5.2	27
46	Ionic liquid additive stabilized cathode/electrolyte interface in LiCoO2 based solid-state lithium metal batteries. Electrochimica Acta, 2021, 368, 137593.	2.6	13
47	Multiple Hydrogen Bonds Promote the Nonmetallic Degradation Process of Polyethylene Terephthalate with an Amino Acid Ionic Liquid Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 4180-4188.	1.8	16
48	lonic Liquids Achieve the Exfoliation of Ultrathin Two-Dimensional VOPO ₄ A·2H ₂ O Crystalline Nanosheets: Implications on Energy Storage and Catalysis. ACS Applied Nano Materials, 2021, 4, 2503-2514.	2.4	5
49	Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors <i>via</i> the Efficient Coupling between TiNb ₂ O ₇ /Holey-rGO Nanoarchitectures and Ionic Liquid-Based Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 21349-21361.	4.0	18
50	Selective Extraction of Lithium from Spent Lithium Batteries by Functional Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 7022-7029.	3.2	54
51	A Highly Stable Li4Ti5O12 Suspension Anolyte for Lithium Ion Flow Batteries. Russian Journal of Physical Chemistry A, 2021, 95, S163-S170.	0.1	0
52	Preparation of Core/Shell Electrically Conductive Fibers by Efficient Coating Carbon Nanotubes on Polyester. Advanced Fiber Materials, 2021, 3, 180-191.	7.9	26
53	High performance thick cathodes enabled by gradient porosity. Electrochimica Acta, 2021, 377, 138105.	2.6	22
54	Efficient activation of dimethyl carbonate to synthesize bio-based polycarbonate by eco-friendly amino acid ionic liquid catalyst. Applied Catalysis A: General, 2021, 617, 118111.	2.2	9

#	Article	IF	CITATIONS
55	Cobalt-Catalyzed Chemoselective Transfer Hydrogenative Cyclization Cascade of Enone-Tethered Aldehydes. Organic Letters, 2021, 23, 3873-3878.	2.4	7
56	Abnormal Enhanced Free Ions of Ionic Liquids Confined in Carbon Nanochannels. Journal of Physical Chemistry Letters, 2021, 12, 6078-6084.	2.1	15
57	Hydrodynamics numerical simulation of a vertical falling film evaporator for ionic liquid systems. Chemical Engineering Science, 2021, 237, 116563.	1.9	7
58	Technoeconomic Analysis and Process Design for CO ₂ Electroreduction to CO in Ionic Liquid Electrolyte. ACS Sustainable Chemistry and Engineering, 2021, 9, 9045-9052.	3.2	20
59	Inâ€Built Quasiâ€Solidâ€State Polyâ€Ether Electrolytes Enabling Stable Cycling of Highâ€Voltage and Wideâ€Temperature Li Metal Batteries. Advanced Functional Materials, 2021, 31, 2102347.	7.8	35
60	Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angewandte Chemie - International Edition, 2021, 60, 22148-22165.	7.2	107
61	Enhanced high-temperature performance and thermal stability of lithium-rich cathode via combining full concentration gradient design with surface spinel modification. Chemical Engineering Journal, 2021, 415, 129042.	6.6	20
62	Quantitative Control Factors of Double Salt Ionic Liquids Catalysis in the Coupling Reaction of Epoxied and Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 10112-10118.	1.8	1
63	lonische Flüssigkeiten und stark eutektische Lösungsmittel in der anorganischen Synthese. Angewandte Chemie, 2021, 133, 22320-22338.	1.6	4
64	Investigating the property and strength of intermolecular interaction in saturated and unsaturated cyclic cations constructed ionic liquids. Journal of Molecular Liquids, 2021, 335, 116253.	2.3	5
65	Tracking the Microâ€Heterogeneity and Hydrogenâ€Bonding Interactions in Hydroxylâ€Functionalized Ionic Liquid Solutions: A Combined Experimental and Computational Study. ChemPhysChem, 2021, 22, 1891-1899.	1.0	4
66	Development of an Ionic Porphyrin-Based Platform as a Biomimetic Light-Harvesting Agent for High-Performance Photoenzymatic Synthesis of Methanol from CO ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 11503-11511.	3.2	27
67	Highly Sensitive Flexible Pressure Sensors Enabled by Mixing of Silicone Elastomer With Ionic Liquid-Grafted Silicone Oil. Frontiers in Robotics and Al, 2021, 8, 737500.	2.0	3
68	High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. ACS Applied Materials & Interfaces, 2021, 13, 47163-47173.	4.0	42
69	Regulating electrochemical CO2RR selectivity at industrial current densities by structuring copper@poly(ionic liquid) interface. Applied Catalysis B: Environmental, 2021, 297, 120471.	10.8	41
70	Ruthenium complex immobilized on supported ionic-liquid-phase (SILP) for alkoxycarbonylation of olefins with CO ₂ . Green Chemistry, 2021, 23, 3073-3080.	4.6	12
71	Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: an activity, stability and mechanism study. Green Chemistry, 2021, 23, 6898-6925.	4.6	32
72	Understanding Structural and Transport Properties of Dissolved Li ₂ S ₈ in Ionic Liquid Electrolytes through Molecular Dynamics Simulations. ChemPhysChem, 2021, 22, 419-429.	1.0	16

#	Article	IF	CITATIONS
73	Metal-free and mild photo-thermal synergism in ionic liquids for lignin C _α –C _β bond cleavage to provide aldehydes. Green Chemistry, 2021, 23, 5524-5534.	4.6	15
74	Constructing single Cu–N ₃ sites for CO ₂ electrochemical reduction over a wide potential range. Green Chemistry, 2021, 23, 5461-5466.	4.6	22
75	Ionic liquid decoration for the hole transport improvement of PEDOT. Materials Advances, 2021, 2, 2009-2020.	2.6	8
76	Review of Methods for Sustainability Assessment of Chemical Engineering Processes. Industrial & Engineering Chemistry Research, 2021, 60, 52-66.	1.8	10
77	Dehydrative Formation of Isosorbide from Sorbitol over Poly(ionic liquid)–Covalent Organic Framework Hybrids. ACS Applied Materials & Interfaces, 2021, 13, 552-562.	4.0	17
78	Thermodynamical Origin of Nonmonotonic Inserting Behavior of Imidazole Ionic Liquids into the Lipid Bilayer. Journal of Physical Chemistry Letters, 2021, 12, 9926-9932.	2.1	9
79	Topological engineering of two-dimensional ionic liquid islands for high structural stability and CO ₂ adsorption selectivity. Chemical Science, 2021, 12, 15503-15510.	3.7	16
80	Epitaxial Regeneration of Spent Graphite Anode Material by an Eco-friendly In-Depth Purification Route. ACS Sustainable Chemistry and Engineering, 2021, 9, 16192-16202.	3.2	27
81	H-Bond Network-Regulated Binder for Si/Graphite Anodes. Industrial & Engineering Chemistry Research, 2021, 60, 17399-17407.	1.8	2
82	Highly selective electroreduction of N ₂ and CO ₂ to urea over artificial frustrated Lewis pairs. Energy and Environmental Science, 2021, 14, 6605-6615.	15.6	130
83	Chemical speciation and health risks of airborne heavy metals around an industrial community in Nigeria. Human and Ecological Risk Assessment (HERA), 2020, 26, 242-254.	1.7	9
84	Mesoscale structures and mechanisms in ionic liquids. Particuology, 2020, 48, 55-64.	2.0	22
85	Structure optimization of tailored ionic liquids and process simulation for shale gas separation. AICHE Journal, 2020, 66, e16794.	1.8	34
86	Density, Viscosity, and Conductivity of [VAIM][TFSI] in Mixtures for Lithium-Ion Battery Electrolytes. Journal of Chemical & Engineering Data, 2020, 65, 495-502.	1.0	6
87	A space-confined strategy toward large-area two-dimensional crystals of ionic liquid. Physical Chemistry Chemical Physics, 2020, 22, 1820-1825.	1.3	15
88	Combining Ionic Liquids and Sodium Salts into Metalâ€Organic Framework for Highâ€Performance Ionic Conduction. ChemElectroChem, 2020, 7, 183-190.	1.7	19
89	Thermodynamics at microscales: 3D→2D, 1D and 0D. Green Energy and Environment, 2020, 5, 251-258.	4.7	19
90	An ultra-stable lithium plating process enabled by the nanoscale interphase of a macromolecular additive. Journal of Materials Chemistry A, 2020, 8, 23844-23850.	5.2	12

#	Article	IF	CITATIONS
91	Computational Identification of a New Adsorption Site of CO ₂ on the Ag (211) Surface. ChemistrySelect, 2020, 5, 11503-11509.	0.7	4
92	Unraveling the cation and anion effects and kinetics for ionic liquid catalyzed direct synthesis of methyl acrylate under mild conditions. Green Chemistry, 2020, 22, 7913-7923.	4.6	17
93	Aromatic Esterâ€Functionalized Ionic Liquid for Highly Efficient CO ₂ Electrochemical Reduction to Oxalic Acid. ChemSusChem, 2020, 13, 4900-4905.	3.6	33
94	Selective aerobic oxidative cleavage of lignin C C bonds over novel hierarchical Ce-Cu/MFI nanosheets. Applied Catalysis B: Environmental, 2020, 279, 119343.	10.8	49
95	Advances in bio-nylon 5X: discovery of new lysine decarboxylases for the high-level production of cadaverine. Green Chemistry, 2020, 22, 8656-8668.	4.6	29
96	Sustainable Advanced Fenton-like Catalysts Based on Mussel-Inspired Magnetic Cellulose Nanocomposites to Effectively Remove Organic Dyes and Antibiotics. ACS Applied Materials & Interfaces, 2020, 12, 51952-51959.	4.0	64
97	Highly Efficient and Selective Synthesis of Methyl Carbonate-Ended Polycarbonate Precursors from Dimethyl Carbonate and Bisphenol A. Industrial & Engineering Chemistry Research, 2020, 59, 13948-13955.	1.8	8
98	A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nature Communications, 2020, 11, 4341.	5.8	257
99	Dynamic Process Simulation and Assessment of CO ₂ Removal from Confined Spaces Using Pressure Swing Adsorption. Industrial & Engineering Chemistry Research, 2020, 59, 16407-16419.	1.8	12
100	Effect of Framework Si/Al Ratios on the Catalytic Performance of Isobutane Alkylation over LaFAU Zeolites. Energy & Fuels, 2020, 34, 9426-9435.	2.5	8
101	Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nature Communications, 2020, 11, 4450.	5.8	52
102	Effect of Clusters on [Li] Solvation and Transport in Mixed Organic Compound/Ionic Liquid Electrolytes under External Electric Fields. Industrial & Engineering Chemistry Research, 2020, 59, 11308-11316.	1.8	14
103	Fabrication of Ionic Liquid-Based Pickering Emulsion and Its Enhancement for Tri-isobutene Formation in Isobutene Oligomerization. Industrial & Engineering Chemistry Research, 2020, 59, 10436-10446.	1.8	3
104	Catalytic synthesis of methacrolein <i>via</i> the condensation of formaldehyde and propionaldehyde with <scp>l</scp> -proline. Green Chemistry, 2020, 22, 4222-4230.	4.6	12
105	A new strategy for enhancing the room temperature conductivity of solid-state electrolyte by using a polymeric ionic liquid. Ionics, 2020, 26, 4803-4812.	1.2	22
106	One-pot synthesis of bio-based polycarbonates from dimethyl carbonate and isosorbide under metal-free condition. Green Chemistry, 2020, 22, 4550-4560.	4.6	22
107	A non-phosgene process for bioderived polycarbonate with high molecular weight and advanced property profile synthesized using amino acid ionic liquids as catalysts. Green Chemistry, 2020, 22, 2534-2542.	4.6	28
108	Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C–C coupling reactions. Green Chemistry, 2020, 22, 2605-2612.	4.6	47

#	Article	IF	CITATIONS
109	Synthesis of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids. Green Chemistry, 2020, 22, 2488-2497.	4.6	27
110	Excess spectroscopy and its applications in the study of solution chemistry. Pure and Applied Chemistry, 2020, 92, 1611-1626.	0.9	38
111	Light-Controlled Nanoparticle Collision Experiments. Journal of Physical Chemistry Letters, 2020, 11, 2972-2976.	2.1	11
112	Boosting the hole transport of conductive polymers by regulating the ion ratio in ionic liquid additives. Physical Chemistry Chemical Physics, 2020, 22, 9796-9807.	1.3	9
113	A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid‣tate Lithium Metal Batteries. Advanced Materials, 2020, 32, e2000399.	11.1	292
114	Screening Deep Eutectic Solvents for CO2 Capture With COSMO-RS. Frontiers in Chemistry, 2020, 8, 82.	1.8	36
115	Cost-Effective Synthesis of High Molecular Weight Biobased Polycarbonate via Melt Polymerization of Isosorbide and Dimethyl Carbonate. ACS Sustainable Chemistry and Engineering, 2020, 8, 9968-9979.	3.2	27
116	Structure and interaction properties of MBIL [Bmim][FeCl4] and methanol: A combined FTIR and simulation study. Journal of Molecular Liquids, 2020, 309, 113061.	2.3	26
117	Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS ₂ /C interoverlapped superstructure with robust charge transfer networks. Journal of Materials Chemistry A, 2020, 8, 15002-15011.	5.2	26
118	Insight into the formation and permeability of ionic liquid unilamellar vesicles by molecular dynamics simulation. Soft Matter, 2020, 16, 2605-2610.	1.2	19
119	Enhancement of transdermal delivery of artemisinin using microemulsion vehicle based on ionic liquid and lidocaine ibuprofen. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110886.	2.5	37
120	Fast Catalytic Esterification Using a Hydrophobized Zrâ€MOF with Acidic Ionic Liquid Linkers. ChemistrySelect, 2020, 5, 1153-1156.	0.7	9
121	Novel continuous process for methacrolein production in numerous droplet reactors. AICHE Journal, 2020, 66, e16239.	1.8	20
122	Protic vs aprotic ionic liquid for CO2 fixation: A simulation study. Green Energy and Environment, 2020, 5, 183-194.	4.7	49
123	Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chemistry, 2020, 22, 3122-3131.	4.6	111
124	Excellent Trace Detection of Proteins on TiO ₂ Nanotube Substrates through Novel Topography Optimization. Journal of Physical Chemistry C, 2020, 124, 27790-27800.	1.5	10
125	Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	6
126	Degradation of lignin in ionic liquids: a review. Scientia Sinica Chimica, 2020, 50, 259-270.	0.2	0

Ya-Qin Zhang

#	Article	IF	CITATIONS
127	A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor. Ionics, 2019, 25, 241-251.	1.2	14
128	A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Science Advances, 2019, 5, eaaw2322.	4.7	290
129	Insights into the solvation and dynamic behaviors of a lithium salt in organic- and ionic liquid-based electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 19216-19225.	1.3	29
130	Amide-Functionalized Ionic Liquids As Curing Agents for Epoxy Resin: Preparation, Characterization, and Curing Behaviors with TDE-85. Industrial & Engineering Chemistry Research, 2019, 58, 14088-14097.	1.8	16
131	Study on ionic liquid/cellulose/coagulator phase diagram and its application in green spinning process. Journal of Molecular Liquids, 2019, 289, 111127.	2.3	20
132	Metalâ€Free Photochemical Degradation of Ligninâ€Derived Aryl Ethers and Lignin by Autologous Radicals through Ionic Liquid Induction. ChemSusChem, 2019, 12, 4005-4013.	3.6	37
133	Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Frontiers in Energy Research, 2019, 7, .	1.2	145
134	Ionic Liquids: Molecular Insights into the Regulatable Interfacial Property and Flow Behavior of Confined Ionic Liquids in Graphene Nanochannels (Small 29/2019). Small, 2019, 15, 1970156.	5.2	2
135	Neuron-Mimic Smart Electrode: A Two-Dimensional Multiscale Synergistic Strategy for Densely Packed and High-Rate Lithium Storage. ACS Nano, 2019, 13, 9148-9160.	7.3	15
136	First-principles study on screening doped TiO2(B) as an anode material with high conductivity and low lithium transport resistance for lithium-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 17985-17992.	1.3	12
137	Achieving Both High Voltage and High Capacity in Aqueous Zincâ€lon Battery for Record High Energy Density. Advanced Functional Materials, 2019, 29, 1906142.	7.8	285
138	Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chemistry, 2019, 21, 9-35.	4.6	96
139	Fabrication of Multilayered Molecularly Imprinted Membrane for Selective Recognition and Separation of Artemisinin. ACS Sustainable Chemistry and Engineering, 2019, 7, 3127-3137.	3.2	55
140	Highly Selective Oxygen/Nitrogen Separation Membrane Engineered Using a Porphyrin-Based Oxygen Carrier. Membranes, 2019, 9, 115.	1.4	19
141	Ceria imparts superior low temperature activity to nickel catalysts for CO ₂ methanation. Catalysis Science and Technology, 2019, 9, 5636-5650.	2.1	40
142	Insight into the Relationship between Viscosity and Hydrogen Bond of a Series of Imidazolium Ionic Liquids: A Molecular Dynamics and Density Functional Theory Study. Industrial & Engineering Chemistry Research, 2019, 58, 18848-18854.	1.8	28
143	Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2 SiO /Graphite lithium-ion batteries. Journal of Power Sources, 2019, 439, 227056.	4.0	31
144	Effects of the Water Content on the Transport Properties of Ionic Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 19661-19669.	1.8	13

#	Article	IF	CITATIONS
145	Synthesis of Polyionic Liquid by Phenolic Condensation and Its Application in Esterification. ACS Sustainable Chemistry and Engineering, 2019, 7, 17220-17226.	3.2	21
146	Molecular Insights into the Regulatable Interfacial Property and Flow Behavior of Confined Ionic Liquids in Graphene Nanochannels. Small, 2019, 15, e1804508.	5.2	44
147	Improvement of product distribution through enhanced mass transfer in isobutane/butene alkylation. Chemical Engineering Research and Design, 2019, 143, 190-200.	2.7	15
148	Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic [Bmim]PF ₆ -Ru/SBA-15 catalysis under acid free conditions. Green Chemistry, 2019, 21, 597-605.	4.6	41
149	IL-oxidizer/IL-fuel combinations as greener hypergols. New Journal of Chemistry, 2019, 43, 1127-1129.	1.4	11
150	<i>In situ</i> generated 3D hierarchical Co ₃ O ₄ @MnO ₂ core–shell hybrid materials: self-assembled fabrication, morphological control and energy applications. Journal of Materials Chemistry A, 2019, 7, 5967-5980.	5.2	32
151	Theoretical Insights Into the Depolymerization Mechanism of Lignin to Methyl p-hydroxycinnamate by [Bmim][FeCl4] Ionic Liquid. Frontiers in Chemistry, 2019, 7, 446.	1.8	14
152	Synthesis of high-molecular weight isosorbide-based polycarbonates through efficient activation of endo-hydroxyl groups by an ionic liquid. Green Chemistry, 2019, 21, 3891-3901.	4.6	33
153	2D Meso/Microporous Platelet Carbon Derived from Metalâ€Organic frameworks and Its Application in Highâ€Performance Liâ€S Batteries. ChemElectroChem, 2019, 6, 3091-3100.	1.7	6
154	A Wholly Degradable, Rechargeable Zn–Ti ₃ C ₂ MXene Capacitor with Superior Anti-Self-Discharge Function. ACS Nano, 2019, 13, 8275-8283.	7.3	224
155	Functional Ionic Liquid Modified Core-Shell Structured Fibrous Gel Polymer Electrolyte for Safe and Efficient Fast Charging Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 421.	1.8	9
156	High Aluminum Content Beta Zeolite as an Active Lewis Acid Catalyst for γ-Valerolactone Decarboxylation. Industrial & Engineering Chemistry Research, 2019, 58, 11841-11848.	1.8	12
157	Electrolyte for lithium protection: From liquid to solid. Green Energy and Environment, 2019, 4, 360-374.	4.7	110
158	Efficient transformation of CO ₂ to cyclic carbonates using bifunctional protic ionic liquids under mild conditions. Green Chemistry, 2019, 21, 3456-3463.	4.6	100
159	Activating C oordinated Iron of Iron Hexacyanoferrate for Zn Hybridâ€lon Batteries with 10 000 ycle Lifespan and Superior Rate Capability. Advanced Materials, 2019, 31, e1901521.	11.1	363
160	Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry, 2019, 21, 3499-3535.	4.6	273
161	Isobutane/2-Butene Alkylation Reaction Catalyzed by Cu-Modified and Rare Earth X-Type Zeolite. Industrial & Engineering Chemistry Research, 2019, 58, 9690-9700.	1.8	15
162	Highly Porous Metalloporphyrin Covalent Ionic Frameworks with Wellâ€Đefined Cooperative Functional Groups as Excellent Catalysts for CO ₂ Cycloaddition. Chemistry - A European Journal, 2019, 25, 9052-9059.	1.7	36

#	Article	IF	CITATIONS
163	Inhibiting degradation of cellulose dissolved in ionic liquids <i>via</i> amino acids. Green Chemistry, 2019, 21, 2777-2787.	4.6	43
164	Unveiling of the energy storage mechanisms of multi -modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes. Electrochimica Acta, 2019, 313, 532-543.	2.6	35
165	Synergistic Regulation of Polysulfides Conversion and Deposition by MOFâ€Derived Hierarchically Ordered Carbonaceous Composite for Highâ€Energy Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1900875.	7.8	104
166	Theoretical Elucidation of β-O-4 Bond Cleavage of Lignin Model Compound Promoted by Sulfonic Acid-Functionalized Ionic Liquid. Frontiers in Chemistry, 2019, 7, 78.	1.8	24
167	Highly Efficient Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids. ChemSusChem, 2019, 12, 2715-2724.	3.6	58
168	Separation Efficiency of CO ₂ in Ionic Liquids/Poly(vinylidene fluoride) Composite Membrane: A Molecular Dynamics Study. Industrial & Engineering Chemistry Research, 2019, 58, 6887-6898.	1.8	18
169	Strategy Combining Free Volume Theory and Fragment Contribution Corresponding State Method for Predicting Viscosities of Ionic Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 5640-5649.	1.8	6
170	Ionic Liquid Incorporated Metal Organic Framework for High Ionic Conductivity over Extended Temperature Range. ACS Sustainable Chemistry and Engineering, 2019, 7, 7892-7899.	3.2	40
171	Physicochemical Properties of Various 2-Hydroxyethylammonium Sulfonate -Based Protic Ionic Liquids and Their Potential Application in Hydrodeoxygenation. Frontiers in Chemistry, 2019, 7, 196.	1.8	14
172	Height-driven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study. Physical Chemistry Chemical Physics, 2019, 21, 12767-12776.	1.3	22
173	Selective Oxidation of Amino Alcohols to Amino Acids over Au Supported on Monoclinic ZrO ₂ : Dominant Active Sites and Kinetic Study. Industrial & Engineering Chemistry Research, 2019, 58, 8506-8516.	1.8	15
174	A facile ionic liquid approach to prepare cellulose-rich aerogels directly from corn stalks. Green Chemistry, 2019, 21, 2699-2708.	4.6	32
175	Polymeric ionic liquids tailored by different chain groups for the efficient conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2019, 21, 2352-2361.	4.6	52
176	Green chemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 995-1077.	2.3	3
177	Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts. Green Chemistry, 2019, 21, 897-906.	4.6	95
178	Preparation of MWCNTs-Graphene-Cellulose Fiber with Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 20013-20021.	3.2	40
179	Insight into the Performance of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Engineering Chemistry Research, 2019, 58, 1443-1453.	1.8	23
180	Lewis Acid–Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc) ₂ Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 3292-3300.	3.2	121

#	Article	IF	CITATIONS
181	Direct conversion of shrimp shells to <i>O</i> -acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chemistry, 2019, 21, 87-98.	4.6	81
182	<i>In Situ</i> Charge Exfoliated Soluble Covalent Organic Framework Directly Used for Zn–Air Flow Battery. ACS Nano, 2019, 13, 878-884.	7.3	182
183	Transesterification of Isosorbide with Dimethyl Carbonate Catalyzed by Taskâ€Specific Ionic Liquids. ChemSusChem, 2019, 12, 1169-1178.	3.6	41
184	Lithium Recovery from the Mother Liquor Obtained in the Process of Li ₂ CO ₃ Production. Industrial & Engineering Chemistry Research, 2019, 58, 1363-1372.	1.8	34
185	Spider-Web-Inspired Nanocomposite-Modified Separator: Structural and Chemical Cooperativity Inhibiting the Shuttle Effect in Li–S Batteries. ACS Nano, 2019, 13, 1563-1573.	7.3	65
186	Theoretical Study of Ionic Liquid Clusters Catalytic Effect on the Fixation of CO ₂ . Industrial & Engineering Chemistry Research, 2019, 58, 34-43.	1.8	21
187	The Effect of Concentration of Lithium Salt on the Structural and Transport Properties of Ionic Liquid-Based Electrolytes. Frontiers in Chemistry, 2019, 7, 945.	1.8	56
188	Green Chemical Engineering Based on Ionic Liquids. , 2019, , 667-690.		1
189	Electrodeposition of Aluminum in Ionic Liquids. , 2019, , .		0
190	Reversible Phase Transfer of Carbon Dots between an Organic Phase and Aqueous Solution Triggered by CO ₂ . Angewandte Chemie, 2018, 130, 3749-3753.	1.6	9
191	Direct conversion of cellulose to sorbitol via an enhanced pretreatment with ionic liquids. Journal of Chemical Technology and Biotechnology, 2018, 93, 2617-2624.	1.6	15
192	Theoretical studies on glycolysis of poly(ethylene terephthalate) in ionic liquids. RSC Advances, 2018, 8, 8209-8219.	1.7	35
193	Amino functionalized [B ₁₂ H ₁₂] ^{2â~'} salts as hypergolic fuels. New Journal of Chemistry, 2018, 42, 3568-3573.	1.4	22
194	Base-free preparation of low molecular weight chitin from crab shell. Carbohydrate Polymers, 2018, 190, 148-155.	5.1	39
195	Electrolytic solvent effects on the gassing behavior in LCO LTO batteries. Electrochimica Acta, 2018, 274, 170-176.	2.6	5
196	Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. Nano Research, 2018, 11, 4673-4685.	5.8	50
197	ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 8358-8365.	5.2	37
198	A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC Advances, 2018, 8, 13034-13039.	1.7	21

#	Article	IF	CITATIONS
199	One-step preparation of an antibacterial chitin/Zn composite from shrimp shells using urea-Zn(OAc) ₂ ·2H ₂ O aqueous solution. Green Chemistry, 2018, 20, 2212-2217.	4.6	24
200	B ₁₂ H ₁₂ ^{2–} â€Based Metal (Cu ²⁺ , Ni ²⁺ ,) Tj Inorganic Chemistry, 2018, 2018, 981-986.	ETQq0 0 0 1.0	rgBT /Overloc 32
201	Hydrogen-Bonding Interactions in Pyridinium-Based Ionic Liquids and Dimethyl Sulfoxide Binary Systems: A Combined Experimental and Computational Study. ACS Omega, 2018, 3, 1823-1833.	1.6	53
202	Synthesis of Cyclic Carbonate Catalyzed by DBU Derived Basic Ionic Liquids. Chinese Journal of Chemistry, 2018, 36, 293-298.	2.6	31
203	Nature-Inspired 2D-Mosaic 3D-Gradient Mesoporous Framework: Bimetal Oxide Dual-Composite Strategy toward Ultrastable and High-Capacity Lithium Storage. ACS Nano, 2018, 12, 2035-2047.	7.3	40
204	Reversible Phase Transfer of Carbon Dots between an Organic Phase and Aqueous Solution Triggered by CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 3687-3691.	7.2	33
205	One-Pot Synthesis of 2,5-Furandicarboxylic Acid from Fructose in Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 1851-1858.	1.8	46
206	The Chitin/Keggin-type heteropolyacid hybrid microspheres as catalyst for oxidation of methacrolein to methacrylic acid. Chemical Engineering Journal, 2018, 334, 1657-1667.	6.6	36
207	Ultrasonic assisted extraction of artemisinin from <i>Artemisia Annua</i> L. using monoether-based solvents. Green Chemistry, 2018, 20, 713-723.	4.6	31
208	One-Step Conversion of Biomass-Derived Furanics into Aromatics by BrÃ,nsted Acid Ionic Liquids at Room Temperature. ACS Sustainable Chemistry and Engineering, 2018, 6, 2541-2551.	3.2	52
209	Amino acids/superbases as eco-friendly catalyst system for the synthesis of cyclic carbonates under metal-free and halide-free conditions. Synthetic Communications, 2018, 48, 876-886.	1.1	15
210	Low energy recycling of ionic liquids <i>via</i> freeze crystallization during cellulose spinning. Green Chemistry, 2018, 20, 493-501.	4.6	41
211	Tailoring Molecular Weight of Bioderived Polycarbonates via Bifunctional Ionic Liquids Catalysts under Metal-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 2684-2693.	3.2	51
212	Azetidiniumâ€based Hypergolic Ionic Liquids with High Strain Energy. ChemistrySelect, 2018, 3, 284-288.	0.7	7
213	Enhanced Catalytic Activity with Oxygen for Methyl Acrylate Production via Crossâ€Aldol Condensation Reaction. Chemical Engineering and Technology, 2018, 41, 1331-1341.	0.9	9
214	Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids. Cellulose, 2018, 25, 3241-3254.	2.4	30
215	Protic Quaternary Ammonium Ionic Liquids for Catalytic Conversion of CO ₂ into Cyclic Carbonates: A Combined Ab Initio and MD Study. Industrial & Engineering Chemistry Research, 2018, 57, 7121-7129.	1.8	14
216	12-Tungstophosphoric acid niched in Zr-based metal-organic framework: a stable and efficient catalyst for Friedel-Crafts acylation. Science China Chemistry, 2018, 61, 402-411.	4.2	46

#	Article	IF	CITATIONS
217	Double-Confined Sulfur Inside Compressed Nickel Foam and Pencil-Plating Graphite for Lithium–Sulfur Battery. Industrial & Engineering Chemistry Research, 2018, 57, 4880-4886.	1.8	2
218	Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects. Chemical Science, 2018, 9, 4027-4043.	3.7	189
219	Efficient and reversible absorption of ammonia by cobalt ionic liquids through Lewis acid–base and cooperative hydrogen bond interactions. Green Chemistry, 2018, 20, 2075-2083.	4.6	121
220	A lithium salt additive Li2ZrF6 for enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 cathode. Ionics, 2018, 24, 2965-2972.	1.2	14
221	Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin. Biomaterials, 2018, 167, 205-215.	5.7	57
222	Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a bio-based polyester monomer. Catalysis Science and Technology, 2018, 8, 164-175.	2.1	88
223	Enhanced NH ₃ capture by imidazoliumâ€based protic ionic liquids with different anions and cation substituents. Journal of Chemical Technology and Biotechnology, 2018, 93, 1228-1236.	1.6	78
224	Effect of Metal Ion in Bulk VPO in Aldol Condensation of Formaldehyde and Methyl Acetate to Methyl Acrylate. Industrial & Engineering Chemistry Research, 2018, 57, 93-100.	1.8	27
225	Nanoscale Observation of Microfibril Swelling and Dissolution in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 909-917.	3.2	18
226	Functionalized ionic liquid membranes for CO ₂ separation. Chemical Communications, 2018, 54, 12671-12685.	2.2	81
227	Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a Dissolution-Degradation Strategy. Industrial & Engineering Chemistry Research, 2018, 57, 16239-16245.	1.8	92
228	Screening of Ionic Liquids for Keratin Dissolution by Means of COSMO-RS and Experimental Verification. ACS Sustainable Chemistry and Engineering, 2018, 6, 17314-17322.	3.2	52
229	In Situ Tracking of Organic Reactions at the Vapor/Liquid Interfaces of Ionic Liquids. ChemPhysChem, 2018, 19, 2741-2750.	1.0	2
230	Ru nanoparticles stabilized by ionic liquids supported onto silica: highly active catalysts for low-temperature CO ₂ methanation. Green Chemistry, 2018, 20, 4932-4945.	4.6	29
231	Facile Synthesis of Cellulose/ZnO Aerogel with Uniform and Tunable Nanoparticles Based on Ionic Liquid and Polyhydric Alcohol. ACS Sustainable Chemistry and Engineering, 2018, 6, 16248-16254.	3.2	14
232	Low Temperature Electrochemical Deposition of Aluminum in Organic Bases/Thiourea-Based Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 15480-15486.	3.2	18
233	Ionic Liquid–Based Membranes for CO2 Separation. , 2018, , 235-260.		6
234	Lower Limit of Interfacial Thermal Resistance across the Interface between an Imidazolium Ionic Liquid and Solid Surface. Journal of Physical Chemistry C, 2018, 122, 22194-22200.	1.5	27

#	Article	IF	CITATIONS
235	Effect of Ion Cluster on Concentration of Long-Alkyl-Chain Ionic Liquids Aqueous Solution by Nanofiltration. Industrial & Engineering Chemistry Research, 2018, 57, 7633-7642.	1.8	8
236	The confined [Bmim][BF ₄] ionic liquid flow through graphene oxide nanochannels: a molecular dynamics study. Physical Chemistry Chemical Physics, 2018, 20, 17773-17780.	1.3	40
237	Solid–Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20412-20421.	4.0	17
238	[Bis(imidazolyl)–BH ₂] ⁺ [Bis(triazolyl)–BH ₂] ^{â^'} Ionic Liquids with High Density and Energy Capacity. Chemistry - an Asian Journal, 2018, 13, 1932-1940.	1.7	17
239	Highly Active Ni-Based Catalyst Derived from Double Hydroxides Precursor for Low Temperature CO ₂ Methanation. Industrial & Engineering Chemistry Research, 2018, 57, 9102-9111.	1.8	60
240	Synthesis of vanadium phosphorus oxide catalysts promoted by iron-based ionic liquids and their catalytic performance in selective oxidation of <i>n</i> butane. Catalysis Science and Technology, 2018, 8, 4515-4525.	2.1	22
241	lonic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2018, 20, 3232-3241.	4.6	80
242	Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery. Journal of Materials Chemistry A, 2018, 6, 18479-18487.	5.2	55
243	Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries. Ionics, 2018, 24, 3691-3698.	1.2	29
244	Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol. Green Chemistry, 2018, 20, 4339-4348.	4.6	68
245	Ionic Liquids as Bifunctional Cosolvents Enhanced CO2 Conversion Catalysed by NADH-Dependent Formate Dehydrogenase. Catalysts, 2018, 8, 304.	1.6	11
246	An effective polysulfides bridgebuilder to enable long-life lithium-sulfur flow batteries. Nano Energy, 2018, 51, 113-121.	8.2	30
247	Selective catalytic tailoring of the H unit in herbaceous lignin for methyl <i>p</i> -hydroxycinnamate production over metal-based ionic liquids. Green Chemistry, 2018, 20, 3743-3752.	4.6	50
248	Green Chemical Engineering Based on Ionic Liquids. , 2018, , 1-24.		0
249	DBN-based ionic liquids with high capability for the dissolution of wool keratin. RSC Advances, 2017, 7, 1981-1988.	1.7	62
250	Quantitative Change in Disulfide Bonds and Microstructure Variation of Regenerated Wool Keratin from Various Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2017, 5, 2614-2622.	3.2	54
251	Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO ₂ separation. RSC Advances, 2017, 7, 6422-6431.	1.7	100
252	Deep hydrodenitrification of pyridine by solid catalyst coupling with ionic liquids under mild conditions. Green Chemistry, 2017, 19, 1692-1700.	4.6	26

#	Article	IF	CITATIONS
253	Boron-doped melamine-derived carbon nitrides tailored by ionic liquids for catalytic conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2017, 19, 2957-2965.	4.6	77
254	Why Only Ionic Liquids with Unsaturated Heterocyclic Cations Can Dissolve Cellulose: A Simulation Study. ACS Sustainable Chemistry and Engineering, 2017, 5, 3417-3428.	3.2	80
255	A DFT study on lignin dissolution in imidazolium-based ionic liquids. RSC Advances, 2017, 7, 12670-12681.	1.7	100
256	A Simple and Mild Approach for the Synthesis of <i>p</i> â€Xylene from Bioâ€Based 2,5â€Dimethyfuran by Using Metal Triflates. ChemSusChem, 2017, 10, 2394-2401.	3.6	40
257	Temperature-Controlled Reaction–Separation for Conversion of CO ₂ to Carbonates with Functional Ionic Liquids Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 3081-3086.	3.2	69
258	Synthesis, Crystal Structure, and Properties of Energetic Copper(II) Complex based on 3,5-Dinitrobenzoic Acid and 1,5-Diaminotetrazole. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 647-652.	0.6	11
259	Bicyclic ammonium ionic liquids as dense hypergolic fuels. RSC Advances, 2017, 7, 21592-21599.	1.7	18
260	Process Analysis for the Production of Hydrogen and Liquid Fuels from Oil Shale. Energy Technology, 2017, 5, 1963-1978.	1.8	3
261	Kinetic Evaluation of Hydrodesulfurization and Hydrodenitrogenation Reactions via a Lumped Model. Energy & Fuels, 2017, 31, 5491-5497.	2.5	18
262	Spherical Pâ€modified catalysts for heterogeneous crossâ€aldol condensation of formaldehyde with methyl acetate for methyl acrylate production. Canadian Journal of Chemical Engineering, 2017, 95, 2104-2111.	0.9	14
263	Multiscale Studies on Ionic Liquids. Chemical Reviews, 2017, 117, 6636-6695.	23.0	584
264	Effect of small amount of water on the dynamics properties and microstructures of ionic liquids. AICHE Journal, 2017, 63, 2248-2256.	1.8	48
265	Catalysts, Process Optimization, and Kinetics for the Production of Methyl Acrylate over Vanadium Phosphorus Oxide Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 5860-5871.	1.8	38
266	New series of soft materials based on ionic liquid–metal complexes for high-efficient electrolytes of dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 14630-14638.	5.2	7
267	Production of Bioâ€Based Gasoline by Nobleâ€Metalâ€Catalyzed Hydrodeoxygenation of αâ€Angelica Lactone Derived Di/Trimers. ChemistrySelect, 2017, 2, 4219-4225.	0.7	14
268	A self-stabilized suspension catholyte to enable long-term stable Li–S flow batteries. Journal of Materials Chemistry A, 2017, 5, 12904-12913.	5.2	27
269	Synthesis of isosorbide-based polycarbonates via melt polycondensation catalyzed by quaternary ammonium ionic liquids. Chinese Journal of Catalysis, 2017, 38, 908-917.	6.9	36
270	Effects of water content on the dissolution behavior of wool keratin using 1-ethyl-3-methylimidazolium dimethylphosphate. Science China Chemistry, 2017, 60, 934-941.	4.2	21

#	Article	IF	CITATIONS
271	Thiourea-Based Bifunctional Ionic Liquids as Highly Efficient Catalysts for the Cycloaddition of CO2 to Epoxides. Catalysis Letters, 2017, 147, 1654-1664.	1.4	26
272	Hypergolic fuels based on water-stable borohydride cluster anions with ultralow ignition delay times. Journal of Materials Chemistry A, 2017, 5, 13341-13346.	5.2	43
273	Electrodeposition of Al from chloroaluminate ionic liquids with different cations. Ionics, 2017, 23, 2449-2455.	1.2	19
274	Rapid and productive extraction of high purity cellulose material via selective depolymerization of the lignin-carbohydrate complex at mild conditions. Green Chemistry, 2017, 19, 2234-2243.	4.6	39
275	Relationship of basicity and hydrogen bond properties of ionic liquids with its catalytic performance: Application to synthesis of propylene glycol methyl ether. Catalysis Communications, 2017, 96, 69-73.	1.6	17
276	Controllable preparation of phosphonium-based polymeric ionic liquids as highly selective nanocatalysts for the chemical conversion of CO ₂ with epoxides. Green Chemistry, 2017, 19, 2184-2193.	4.6	40
277	Practices for modeling oil shale pyrolysis and kinetics. Reviews in Chemical Engineering, 2017, 34, 21-42.	2.3	6
278	lonic liquids for absorption and separation of gases: An extensive database and a systematic screening method. AICHE Journal, 2017, 63, 1353-1367.	1.8	76
279	Protic ionic liquid [Bim][NTf ₂] with strong hydrogen bond donating ability for highly efficient ammonia absorption. Green Chemistry, 2017, 19, 937-945.	4.6	156
280	Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production. Green Chemistry, 2017, 19, 1462-1489.	4.6	91
281	Improved electrochemical performance in nanoengineered pomegranate-shaped Fe3O4/RGO nanohybrids anode material. Journal of Materials Science, 2017, 52, 3233-3243.	1.7	34
282	A new era of precise liquid regulation: Quasi-liquid. Green Energy and Environment, 2017, 2, 329-330.	4.7	40
283	Trace Water as Prominent Factor to Induce Peptide Selfâ€Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids. Small, 2017, 13, 1702175.	5.2	49
284	High Oxygen Reduction Reaction Performances of Cathode Materials Combining Polyoxometalates, Coordination Complexes, and Carboneous Supports. ACS Applied Materials & Interfaces, 2017, 9, 38486-38498.	4.0	48
285	LiF as an Artificial SEI Layer to Enhance the High-Temperature Cycle Performance of Li ₄ Ti ₅ O ₁₂ . Langmuir, 2017, 33, 11164-11169.	1.6	40
286	An ionic liquid catalyzed probase method for one-pot synthesis of α,Ĵ²-unsaturated esters from esters and aldehydes under mild conditions. Green Chemistry, 2017, 19, 4838-4848.	4.6	15
287	Stability, acidity and interaction properties of [Bmim][SbF6] coupled with concentrated sulfuric acid. Science China Chemistry, 2017, 60, 1243-1249.	4.2	9
288	One-Step Synthesis of Methyl Acrylate Using Methyl Acetate with Formaldehyde in a Fluidized Bed Reactor. Industrial & amp; Engineering Chemistry Research, 2017, 56, 9322-9330.	1.8	17

#	Article	IF	CITATIONS
289	Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4ÂV quasi-solid-state nanohybrid supercapacitors. Electrochimica Acta, 2017, 258, 343-352.	2.6	20
290	In Situ Self-Assembly-Generated 3D Hierarchical Co ₃ O ₄ Micro/Nanomaterial Series: Selective Synthesis, Morphological Control, and Energy Applications. ACS Applied Materials & Interfaces, 2017, 9, 44199-44213.	4.0	22
291	Preparation of cellulose/multi-walled carbon nanotube composite membranes with enhanced conductive property regulated by ionic liquids. Fibers and Polymers, 2017, 18, 1780-1789.	1.1	9
292	Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. Journal of the American Chemical Society, 2017, 139, 17387-17396.	6.6	130
293	Carbon-Based Materials Enhanced Emulsification To Improve Product Distribution in Isobutane/Butene Alkylation Catalyzed by Sulfuric Acid. Industrial & Engineering Chemistry Research, 2017, 56, 7700-7707.	1.8	12
294	Ionic-Liquid-Based CO ₂ Capture Systems: Structure, Interaction and Process. Chemical Reviews, 2017, 117, 9625-9673.	23.0	696
295	Effects of lithium bis(oxalato)borate on electrochemical stability of [Emim][Al2Cl7] ionic liquid for aluminum electrolysis. Ionics, 2017, 23, 959-966.	1.2	8
296	Ternary nanoarray electrode with corn-inspired hierarchical design for synergistic lithium storage. Nano Research, 2017, 10, 172-186.	5.8	13
297	Anionic Clusters Enhanced Catalytic Performance of Protic Acid Ionic Liquids for Isobutane Alkylation. Industrial & Engineering Chemistry Research, 2016, 55, 8271-8280.	1.8	31
298	Tuning the Hydrophilicity and Hydrophobicity of the Respective Cation and Anion: Reversible Phase Transfer of Ionic Liquids. Angewandte Chemie, 2016, 128, 8066-8070.	1.6	12
299	A double-layered Ge/carbon cloth integrated anode for high performance lithium ion batteries. RSC Advances, 2016, 6, 63414-63417.	1.7	3
300	Effects of Support for Vanadium Phosphorus Oxide Catalysts on Vapor-Phase Aldol Condensation of Methyl Acetate with Formaldehyde. Industrial & Engineering Chemistry Research, 2016, 55, 12693-12702.	1.8	41
301	Experimental Discovery of Magnetoresistance and Its Memory Effect in Methylimidazolium-Type Iron-Containing Ionic Liquids. Chemistry of Materials, 2016, 28, 8710-8714.	3.2	13
302	Thermodynamics and separation process for quaternary acrylic systems. AICHE Journal, 2016, 62, 228-240.	1.8	29
303	Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	2
304	Special topic on ionic liquids: Energy, materials & environment. Science China Chemistry, 2016, 59, 505-506.	4.2	9
305	Ionic Liquid Design and Process Simulation for Decarbonization of Shale Gas. Industrial & Engineering Chemistry Research, 2016, 55, 5931-5944.	1.8	97
306	Conversion of bis(2-hydroxyethylene terephthalate) into 1,4-cyclohexanedimethanol by selective hydrogenation using RuPtSn/Al ₂ O ₃ . RSC Advances, 2016, 6, 48737-48744.	1.7	13

#	Article	IF	CITATIONS
307	Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell. Bioresource Technology, 2016, 214, 722-728.	4.8	63
308	Solubilities of CO2, CH4, H2, CO and N2 in choline chloride/urea. Green Energy and Environment, 2016, 1, 195-200.	4.7	65
309	Novel ionic liquid based electrolyte for double layer capacitors with enhanced high potential stability. Science China Chemistry, 2016, 59, 547-550.	4.2	8
310	Predicting H ₂ S solubility in ionic liquids by the quantitative structure–property relationship method using S _{σ-profile} molecular descriptors. RSC Advances, 2016, 6, 70405-70413.	1.7	43
311	Lanthanum and Cesium-Loaded SBA-15 Catalysts for MMA Synthesis by Aldol Condensation of Methyl Propionate and Formaldehyde. Catalysis Letters, 2016, 146, 1808-1818.	1.4	25
312	Dissolution of Sessile Microdroplets of Electrolyte and Graphene Oxide Solutions in an Ouzo System. Langmuir, 2016, 32, 10296-10304.	1.6	6
313	Hydrogen Sulfide Solubility in Ionic Liquids (ILs): An Extensive Database and a New ELM Model Mainly Established by Imidazolium-Based ILs. Journal of Chemical & Engineering Data, 2016, 61, 3970-3978.	1.0	35
314	Facile synthesis of Fe ₃ O ₄ nanorod decorated reduced graphene oxide (RGO) for supercapacitor application. RSC Advances, 2016, 6, 107057-107064.	1.7	75
315	Study on the Wall Lubrication Force for Water–Air in Multi-Scale Bubble Columns and Experimental Validation. Journal of Chemical Engineering of Japan, 2016, 49, 408-416.	0.3	3
316	Electrodeposition in Ionic Liquids. ChemPhysChem, 2016, 17, 335-351.	1.0	117
317	Carbonyl ruthenium catalysts for the low-temperature water–gas shift reaction with ionic liquids as support structure controllers. Green Chemistry, 2016, 18, 4704-4713.	4.6	7
318	Ionic liquids and supercritical carbon dioxide: green and alternative reaction media for chemical processes. Reviews in Chemical Engineering, 2016, 32, 587-609.	2.3	24
319	Active chemisorption sites in functionalized ionic liquids for carbon capture. Chemical Society Reviews, 2016, 45, 4307-4339.	18.7	356
320	Angstrom science: Exploring aggregates from a new viewpoint. Green Energy and Environment, 2016, 1, 75-78.	4.7	24
321	Catalysts, kinetics and process optimization for the synthesis of methyl acrylate over Cs–P/ĺ³-Al ₂ O ₃ . Catalysis Science and Technology, 2016, 6, 6417-6430.	2.1	57
322	Ether-functionalized ionic liquid based composite membranes for carbon dioxide separation. RSC Advances, 2016, 6, 45184-45192.	1.7	47
323	Core–Shell Structured <i>o</i> -LiMnO ₂ @Li ₂ CO ₃ Nanosheet Array Cathode for High-Performance, Wide-Temperature-Tolerance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16116-16124.	4.0	31
324	Tuning the Hydrophilicity and Hydrophobicity of the Respective Cation and Anion: Reversible Phase Transfer of Ionic Liquids. Angewandte Chemie - International Edition, 2016, 55, 7934-7938.	7.2	65

#	Article	IF	CITATIONS
325	Synergistic Effects of Cosolvents on the Dissolution of Wool Keratin Using Ionic Liquids. Chemical Engineering and Technology, 2016, 39, 979-986.	0.9	18
326	Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid. Frontiers of Chemical Science and Engineering, 2016, 10, 139-146.	2.3	16
327	Electrodeposition of crystalline silicon directly from silicon tetrachloride in ionic liquid at low temperature. RSC Advances, 2016, 6, 12061-12067.	1.7	20
328	Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy and Environmental Science, 2016, 9, 1012-1023.	15.6	138
329	Using Sub/Supercritical CO ₂ as "Phase Separation Switch―for the Efficient Production of 5-Hydroxymethylfurfural from Fructose in an Ionic Liquid/Organic Biphasic System. ACS Sustainable Chemistry and Engineering, 2016, 4, 557-563.	3.2	40
330	Promoting effects of MgO, (NH ₄) ₂ SO ₄ or MoO ₃ modification in oxidative esterification of methacrolein over Au/Ce _{0.6} Zr _{0.4} O ₂ -based catalysts. Catalysis Science and Technology, 2016, 6, 5453-5463.	2.1	23
331	Pebax®/TSIL blend thin film composite membranes for CO2 separation. Science China Chemistry, 2016, 59, 538-546.	4.2	51
332	Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chemical Communications, 2016, 52, 6744-6764.	2.2	234
333	Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chemistry, 2016, 18, 2341-2352.	4.6	66
334	Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. Journal of Materials Chemistry A, 2016, 4, 4738-4744.	5.2	139
335	Superbase/saccharide: An ecologically benign catalyst for efficient fixation of CO ₂ into cyclic carbonates. Synthetic Communications, 2016, 46, 497-508.	1.1	15
336	Biomethane production system: Energetic analysis of various scenarios. Bioresource Technology, 2016, 206, 155-163.	4.8	29
337	Photocatalytic reduction of CO ₂ with H ₂ O on CuO/TiO ₂ catalysts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 420-426.	1.2	34
338	Regulating sulfur removal efficiency of fuels by Lewis acidity of ionic liquids. Science China Chemistry, 2016, 59, 526-531.	4.2	10
339	Size effects of alkylimidazolium cations on the interfacial properties and CO ₂ uptake capacity in layered organic–inorganic imidazolium–TiO ₂ hybrids. RSC Advances, 2016, 6, 23102-23109.	1.7	5
340	Synergistic Effects in Nanoengineered HNb ₃ O ₈ /Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO ₂ into Renewable Fuels. Langmuir, 2016, 32, 254-264.	1.6	37
341	Synthesis and Characterization of Tetramethylethylenediamine-Based Hypergolic Ionic Liquids. Journal of Energetic Materials, 2016, 34, 138-151.	1.0	11
342	Aluminum Deposition from Lewis Acidic 1â€Butylâ€3â€Methylimidazolium Chloroaluminate Ionic Liquid ([Bmim]Cl/AlCl ₃) Modified with Methyl Nicotinate. ChemElectroChem, 2015, 2, 1794-1798.	1.7	29

#	Article	IF	CITATIONS
343	Highly efficient carbon dioxide capture by a novel amine solvent containing multiple amino groups. Journal of Chemical Technology and Biotechnology, 2015, 90, 1918-1926.	1.6	17
344	Preparation of 1,4-cyclohexanedimethanol by selective hydrogenation of a waste PET monomer bis(2-hydroxyethylene terephthalate). RSC Advances, 2015, 5, 485-492.	1.7	14
345	Nitrogen-rich energetic 4-R-5-nitro-1,2,3-triazolate salts (R = –CH ₃ , –NH ₂ ,) Tj ETQ materials. Journal of Materials Chemistry A, 2015, 3, 14768-14778.	q1 1 0.784 5.2	4314 rgBT /○ 31
346	A self-assembled Si/SWNT 3D-composite-nanonetwork as a high-performance lithium ion battery anode. RSC Advances, 2015, 5, 97289-97294.	1.7	4
347	Numerical simulation of CO2-ionic liquid flow in a stirred tank. Science China Chemistry, 2015, 58, 1918-1928.	4.2	9
348	Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids. RSC Advances, 2015, 5, 81362-81370.	1.7	119
349	Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides. Science China Chemistry, 2015, 58, 738-746.	4.2	31
350	Improved Catalytic Lifetime of H ₂ SO ₄ for Isobutane Alkylation with Trace Amount of Ionic Liquids Buffer. Industrial & Engineering Chemistry Research, 2015, 54, 1464-1469.	1.8	57
351	Rodlike Micelle Structure and Formation of Ionic liquid in Aqueous Solution by Molecular Simulation. Industrial & Engineering Chemistry Research, 2015, 54, 1681-1688.	1.8	31
352	Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene) Tj ETQq0 0 0 rg	gBT /Overlo 4.6	ock 10 Tf 50 176
353	Improving SO ₂ capture by tuning functional groups on the cation of pyridinium-based ionic liquids. RSC Advances, 2015, 5, 2470-2478.	1.7	61
354	First-Row Transition Metal-Containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly(ethylene terephthalate) (PET). ACS Sustainable Chemistry and Engineering, 2015, 3, 340-348.	3.2	151
355	Ni-enhanced Co3O4 nanoarrays grown in situ on a Cu substrate as integrated anode materials for high-performance Li-ion batteries. RSC Advances, 2015, 5, 7388-7394.	1.7	8
356	A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO4 battery. Ionics, 2015, 21, 2109-2117.	1.2	21
357	A new class of ion-ion interaction: Z-bond. Science China Chemistry, 2015, 58, 495-500.	4.2	53
358	Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2. Tetrahedron Letters, 2015, 56, 1416-1419.	0.7	74
359	Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture: Role of imidazolium-based ionic liquids. Applied Energy, 2015, 154, 771-780.	5.1	83
360	Insight into the activity of efficient acid–base bifunctional catalysts for the coupling reaction of CO ₂ . Molecular Physics, 2015, 113, 3524-3530.	0.8	8

#	Article	IF	CITATIONS
361	Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Physical Chemistry Chemical Physics, 2015, 17, 17894-17905.	1.3	92
362	Gold nanoparticles supported on Ce–Zr oxides for the oxidative esterification of aldehydes to esters. Catalysis Science and Technology, 2015, 5, 3682-3692.	2.1	49
363	Is There Any Preferential Interaction of Ions of Ionic Liquids with DMSO and H ₂ O? A Comparative Study from MD Simulation. Journal of Physical Chemistry B, 2015, 119, 6686-6695.	1.2	39
364	Influence of Microstructure and Interaction on Viscosity of Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 3505-3514.	1.8	51
365	Extractive desulfurization of fuel using N-butylpyridinium-based ionic liquids. RSC Advances, 2015, 5, 30234-30238.	1.7	57
366	Mechanism of fixation of CO2 in the presence of hydroxyl-functionalized quaternary ammonium salts. Journal of CO2 Utilization, 2015, 10, 113-119.	3.3	33
367	Reversible Hydrophobic–Hydrophilic Transition of Ionic Liquids Driven by Carbon Dioxide. Angewandte Chemie - International Edition, 2015, 54, 7265-7269.	7.2	81
368	A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. Journal of Materials Chemistry A, 2015, 3, 4938-4944.	5.2	65
369	Heterocyclic Energetic Salts of 4,4′,5,5′-Tetranitro-2,2′-Biimidazole. Journal of Energetic Materials, 2015, 33, 202-214.	1.0	15
370	An ionic liquid extraction process for the separation of indole from wash oil. Green Chemistry, 2015, 17, 3783-3790.	4.6	70
371	Multi-scale promoting effects of lead for palladium catalyzed aerobic oxidative coupling of methylacrolein with methanol. Catalysis Science and Technology, 2015, 5, 2076-2080.	2.1	20
372	Highly Efficient Dissolution of Wool Keratin by Dimethylphosphate Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2015, 3, 2925-2932.	3.2	66
373	Mechanistic study on the cellulose dissolution in ionic liquids by density functional theory. Chinese Journal of Chemical Engineering, 2015, 23, 1894-1906.	1.7	34
374	Carbon-Number-Based Kinetics, Reactor Modeling, and Process Simulation for Coal Tar Hydrogenation. Energy & Fuels, 2015, 29, 7532-7541.	2.5	10
375	SO ₂ -Induced Variations in the Viscosity of Ionic Liquids Investigated by in Situ Fourier Transform Infrared Spectroscopy and Simulation Calculations. Industrial & Engineering Chemistry Research, 2015, 54, 10854-10862.	1.8	35
376	Highly Selective Capture of CO ₂ by Ether-Functionalized Pyridinium Ionic Liquids with Low Viscosity. Energy & Fuels, 2015, 29, 6039-6048.	2.5	82
377	CL-20 hosted in graphene foam as a high energy material with low sensitivity. RSC Advances, 2015, 5, 98925-98928.	1.7	47
378	Hydrogen-bonding interactions between a pyridinium-based ionic liquid [C4Py][SCN] and dimethyl sulfoxide. Chemical Engineering Science, 2015, 121, 169-179.	1.9	40

Ya-Qin Zhang

#	Article	IF	CITATIONS
379	Conversion of biomass derived valerolactone into high octane number gasoline with an ionic liquid. Green Chemistry, 2015, 17, 1065-1070.	4.6	60
380	Absorption degree analysis on biogas separation with ionic liquid systems. Bioresource Technology, 2015, 175, 135-141.	4.8	22
381	An effective twoâ€step ionic liquids method for cornstalk pretreatment. Journal of Chemical Technology and Biotechnology, 2015, 90, 2057-2065.	1.6	6
382	Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production. Journal of Chemical Technology and Biotechnology, 2014, 89, 1898-1909.	1.6	31
383	Simultaneous desulfurization and denitrogen of liquid fuels using two functionalized group ionic liquids. Science China Chemistry, 2014, 57, 1766-1773.	4.2	23
384	Extraction of coal-tar pitch using NMP/ILs mixed solvents. Science China Chemistry, 2014, 57, 1760-1765.	4.2	7
385	Modified extra-large mesoporous silica supported Au–Ni as a highly efficient catalyst for oxidative coupling of aldehydes with methanol. RSC Advances, 2014, 4, 58769-58772.	1.7	18
386	Gas–liquid massâ€ŧransfer properties in CO ₂ absorption system with ionic liquids. AICHE Journal, 2014, 60, 2929-2939.	1.8	53
387	Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43, 7838-7869.	18.7	399
388	Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catalysis Science and Technology, 2014, 4, 1556.	2.1	222
389	Artificial photosynthesis for solar hydrogen generation over transition-metal substituted Keggin-type titanium tungstate. New Journal of Chemistry, 2014, 38, 1315-1320.	1.4	17
390	Ionic liquid clusters: structure, formation mechanism, and effect on the behavior of ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 5893-5906.	1.3	155
391	Ultrathin BiOBr nanocrystals with dominant {001} facets and their high photocatalytic activity. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	24
392	Novel Ether-Functionalized Pyridinium Chloride Ionic Liquids for Efficient SO ₂ Capture. Industrial & Engineering Chemistry Research, 2014, 53, 16832-16839.	1.8	83
393	Enhanced delignification of cornstalk by employing superbase TBD in ionic liquids. RSC Advances, 2014, 4, 27430-27438.	1.7	8
394	Immobilization and molecular rearrangement of ionic liquids on the surface of carbon nanotubes. RSC Advances, 2014, 4, 16267-16273.	1.7	17
395	Effect of Small Amount of Water on CO ₂ Bubble Behavior in Ionic Liquid Systems. Industrial & Engineering Chemistry Research, 2014, 53, 428-439.	1.8	46
396	Deep Desulfurization of Gasoline Fuel using FeCl ₃ -Containing Lewis-Acidic Ionic Liquids. Separation Science and Technology, 2014, 49, 1208-1214.	1.3	25

#	Article	IF	CITATIONS
397	Anion-Based pH Responsive Ionic Liquids: Design, Synthesis, and Reversible Self-Assembling Structural Changes in Aqueous Solution. Langmuir, 2014, 30, 3971-3978.	1.6	54
398	Hydroxyl-Functionalized Ionic Liquid Promoted CO ₂ Fixation According to Electrostatic Attraction and Hydrogen Bonding Interaction. Industrial & Engineering Chemistry Research, 2014, 53, 8426-8435.	1.8	89
399	Formation of C–C bonds for the production of bio-alkanes under mild conditions. Green Chemistry, 2014, 16, 3589-3595.	4.6	68
400	Effect of nicotinamide on electrodeposition of Al from aluminium chloride (AlCl3)-1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquids. Journal of Solid State Electrochemistry, 2014, 18, 257-267.	1.2	42
401	Thermodynamic Modeling and Assessment of Ionic Liquid-Based CO ₂ Capture Processes. Industrial & Engineering Chemistry Research, 2014, 53, 11805-11817.	1.8	112
402	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols. Journal of Chemical & Engineering Data, 2014, 59, 2377-2388.	1.0	52
403	Toxicity of ionic liquids: Database and prediction via quantitative structure–activity relationship method. Journal of Hazardous Materials, 2014, 278, 320-329.	6.5	142
404	1,3-Dimethylimidazolium-2-carboxylate: a zwitterionic salt for the efficient synthesis of vicinal diols from cyclic carbonates. Green Chemistry, 2014, 16, 3297.	4.6	57
405	Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chemistry, 2014, 16, 3071.	4.6	180
406	Hollow spherical carbonized polypyrrole/sulfur composite cathode materials for lithium/sulfur cells with long cycle life. Journal of Power Sources, 2014, 248, 337-342.	4.0	44
407	Low-temperature and low-pressure fuel hydrodesulfurization by solid catalyst coupling with ionic liquids. Fuel, 2014, 134, 74-80.	3.4	30
408	Three-dimensional hierarchical pompon-like Co ₃ O ₄ porous spheres for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13801-13804.	5.2	73
409	Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Scientific Reports, 2014, 4, 6414.	1.6	90
410	Ionic Liquid Based Electrolyte for Electrochemical Energy Storage Application. ECS Meeting Abstracts, 2014, , .	0.0	0
411	Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 11961.	5.2	75
412	Vinyl-functionalized imidazolium ionic liquids as new electrolyte additives for high-voltage Li-ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 2839-2848.	1.2	34
413	Synthesis of Methyl Methacrylate by Aldol Condensation of Methyl Propionate with Formaldehyde Over Acid–Base Bifunctional Catalysts. Catalysis Letters, 2013, 143, 829-838.	1.4	55
414	Insight into the Cosolvent Effect of Cellulose Dissolution in Imidazolium-Based Ionic Liquid Systems. Journal of Physical Chemistry B, 2013, 117, 9042-9049.	1.2	193

#	Article	IF	CITATIONS
415	Structures and hydrogen bonds of biodegradable naphthenate ionic liquids. Fluid Phase Equilibria, 2013, 360, 169-179.	1.4	24
416	Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3, 22739.	1.7	632
417	Effects of LiClO ₄ on the Characteristics and Ionic Conductivity of the Solid Polymer Electrolytes Composed of PEO, LiClO ₄ and PLiAA. Materials Science Forum, 2013, 743-744, 53-58.	0.3	5
418	Ionic liquid enhanced alkylation of iso-butane and 1-butene. Catalysis Today, 2013, 200, 30-35.	2.2	50
419	The Hydrogen-Bonding Interactions between 1-Ethyl-3-Methylimidazolium Lactate Ionic Liquid and Methanol. Australian Journal of Chemistry, 2013, 66, 50.	0.5	37
420	A Novel Dual Amino-Functionalized Cation-Tethered Ionic Liquid for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 5835-5841.	1.8	145
421	Effects of anionic structure on the dissolution of cellulose in ionic liquids revealed by molecular simulation. Carbohydrate Polymers, 2013, 94, 723-730.	5.1	77
422	A new fragment contributionâ€corresponding states method for physicochemical properties prediction of ionic liquids. AICHE Journal, 2013, 59, 1348-1359.	1.8	102
423	Physicochemical Characterization of MF _{<i>m</i>} [–] -Based Ammonium Ionic Liquids. Journal of Chemical & Engineering Data, 2013, 58, 1505-1515.	1.0	28
424	Study on the recovery of ionic liquids from dilute effluent by electrodialysis method and the fouling of cation-exchange membrane. Science China Chemistry, 2013, 56, 1811-1816.	4.2	27
425	Catalytic Methanation of Carbon Dioxide by Active Oxygen Material Ce _x Zr _{1â^'x} O ₂ Supported NiCo Bimetallic Nanocatalysts. AICHE Journal, 2013, 59, 2567-2576.	1.8	59
426	Catalytic hydrorefining of tar to liquid fuel over multi-metals (W-Mo-Ni) catalysts. Journal of Renewable and Sustainable Energy, 2013, 5, .	0.8	22
427	Urea as an efficient and reusable catalyst for the glycolysis of poly(ethylene terephthalate) wastes and the role of hydrogen bond in this process. Green Chemistry, 2012, 14, 2559.	4.6	129
428	Structure of ionic liquids under external electric field: a molecular dynamics simulation. Molecular Simulation, 2012, 38, 172-178.	0.9	38
429	Carbon capture with ionic liquids: overview and progress. Energy and Environmental Science, 2012, 5, 6668.	15.6	731
430	Effect of the addition of cornstalk to coal powder/coal tar combustion. Journal of Thermal Analysis and Calorimetry, 2012, 109, 817-823.	2.0	9
431	Role of Hydrogen Bonds in Ionic-Liquid-Mediated Extraction of Natural Bioactive Homologues. Industrial & Engineering Chemistry Research, 2012, 51, 5299-5308.	1.8	29
432	Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chemistry, 2012, 14, 654.	4.6	314

#	Article	IF	CITATIONS
433	ZnBr ₂ -Based Choline Chloride Ionic Liquid for Efficient Fixation of CO ₂ to Cyclic Carbonate. Synthetic Communications, 2012, 42, 2564-2573.	1.1	50
434	Facile synthesis of SnO2 nanocrystals coated conducting polymer nanowires for enhanced lithium storage. Journal of Power Sources, 2012, 219, 199-203.	4.0	31
435	Isobutane alkylation using acidic ionic liquid catalysts. Catalysis Communications, 2012, 26, 68-71.	1.6	48
436	Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure and Applied Chemistry, 2012, 84, 745-754.	0.9	26
437	Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution. Journal of Materials Chemistry, 2012, 22, 23815.	6.7	83
438	All-atom and united-atom simulations of guanidinium-based ionic liquids. Science China Chemistry, 2012, 55, 1573-1579.	4.2	11
439	Computational studies of the structure and cation-anion interactions in 1-ethyl-3-methylimidazolium lactate ionic liquid. Science China Chemistry, 2012, 55, 1548-1556.	4.2	13
440	Electrodeposition of zinc coatings from the solutions of zinc oxide in imidazolium chloride/urea mixtures. Science China Chemistry, 2012, 55, 1587-1597.	4.2	40
441	Extraction of Asphaltenes from Direct Coal Liquefaction Residue by Dialkylphosphate Ionic Liquids. Separation Science and Technology, 2012, 47, 386-391.	1.3	18
442	Assembling of graphene oxide in an isolated dissolving droplet. Soft Matter, 2012, 8, 11249.	1.2	15
443	A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. Journal of Materials Chemistry, 2012, 22, 3319.	6.7	73
444	Understanding Structures and Hydrogen Bonds of Ionic Liquids at the Electronic Level. Journal of Physical Chemistry B, 2012, 116, 1007-1017.	1.2	150
445	Effects of Cationic Structure on Cellulose Dissolution in Ionic Liquids: A Molecular Dynamics Study. ChemPhysChem, 2012, 13, 3126-3133.	1.0	101
446	Hydrogen Bonds: A Structural Insight into Ionic Liquids. Chemistry - A European Journal, 2012, 18, 2748-2761.	1.7	254
447	Efficient extraction of direct coal liquefaction residue with the [bmim]Cl/NMP mixed solvent. RSC Advances, 2011, 1, 1579.	1.7	32
448	Density, Excess Molar Volume and Conductivity of Binary Mixtures of the Ionic Liquid 1,2-Dimethyl-3-hexylimidazolium Bis(trifluoromethylsulfonyl)imide and Dimethyl Carbonate. Journal of Chemical & Engineering Data, 2011, 56, 27-30.	1.0	37
449	Microscopic Structure, Interaction, and Properties of a Guanidinium-Based Ionic Liquid and Its Mixture with CO ₂ . Industrial & Engineering Chemistry Research, 2011, 50, 8323-8332.	1.8	32
450	Study on Extraction Asphaltenes from Direct Coal Liquefaction Residue with Ionic Liquids. Industrial & & & & & & & & & & & & & & & & & & &	1.8	55

#	Article	IF	CITATIONS
451	Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Materials Chemistry and Physics, 2011, 128, 220-227.	2.0	126
452	Influence of anionic structure on the dissolution of chitosan in 1-butyl-3-methylimidazolium-based ionic liquids. Green Chemistry, 2011, 13, 3446.	4.6	154
453	Characterization and thermal behavior of kaolin. Journal of Thermal Analysis and Calorimetry, 2011, 105, 157-160.	2.0	142
454	Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts. Frontiers of Chemical Science and Engineering, 2011, 5, 79-88.	2.3	16
455	Rheological properties of cotton pulp cellulose dissolved in 1â€butylâ€3â€methylimidazolium chloride solutions. Polymer Engineering and Science, 2011, 51, 2381-2386.	1.5	10
456	Vaporization enthalpy and cluster species in gas phase of 1,1,3,3â€ŧetramethylguanidiniumâ€based ionic liquids from computer simulations. AICHE Journal, 2011, 57, 507-516.	1.8	15
457	Green process for methacrolein separation with ionic liquids in the production of methyl methacrylate. AICHE Journal, 2011, 57, 2388-2396.	1.8	32
458	Synthesis, characterization and catalytic performance of SAPOâ€34 molecular sieves for methanolâ€ŧoâ€olefin (MTO) reaction. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 596-605.	0.8	25
459	Preparation and Characterization of a Novel Gel Polymer Membrane Based on a Tetra-Copolymer. Advanced Materials Research, 2011, 396-398, 1755-1759.	0.3	0
460	Enhanced Performance in Vapor O-Methylation of Hydroxybenzene Over a Noval Kind of Mesoporous Rare Earth Phosphate. Zeitschrift Fur Physikalische Chemie, 2010, 224, 857-864.	1.4	0
461	Multi-scale simulation of the 1,3-butadiene extraction separation process with an ionic liquid additive. Green Chemistry, 2010, 12, 1263.	4.6	38
462	Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries. Electrochimica Acta, 2010, 55, 4632-4636.	2.6	185
463	Solubilities of ammonia in basic imidazolium ionic liquids. Fluid Phase Equilibria, 2010, 297, 34-39.	1.4	102
464	A novel ionic liquids-based scrubbing process for efficient CO2 capture. Science China Chemistry, 2010, 53, 1549-1553.	4.2	25
465	Molecular dynamics simulation of desulfurization by ionic liquids. AICHE Journal, 2010, 56, 2983-2996.	1.8	47
466	Molecular simulations of phosphonium-based ionic liquid. Molecular Simulation, 2010, 36, 79-86.	0.9	36
467	Density, Viscosity, and Performances of Carbon Dioxide Capture in 16 Absorbents of Amine + Ionic Liquid + H ₂ 0, Ionic Liquid + H ₂ 0, and Amine + H ₂ 0 Systems. Journal of Chemical & Engineering Data, 2010, 55, 3513-3519.	1.0	137
	Phase Behavior of (1-Alkyl-3-methyl Imidazolium Tetrafluoroborate +) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67	۲d (6-(Hydr	oxymethyl)o

468

#	Article	IF	CITATIONS
469	A Novel cathode material based on polyaniline used for lithium/sulfur secondary battery. Synthetic Metals, 2010, 160, 2041-2044.	2.1	67
470	Molecular simulation of imidazolium amino acid-based ionic liquids. Molecular Simulation, 2010, 36, 1123-1130.	0.9	23
471	Preparation and Performance of Novel Acrylonitrile (AN)-based Copolymer Gel Electrolytes for Lithium Ion Batteries. ECS Transactions, 2009, 16, 115-122.	0.3	2
472	A promising method for electrodeposition of aluminium on stainless steel in ionic liquid. AICHE Journal, 2009, 55, 783-796.	1.8	52
473	Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chemistry, 2009, 11, 1568.	4.6	173
474	Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Letters, 2008, 49, 3588-3591.	0.7	374
475	Simple and safe synthesis of microporous aluminophosphate molecular sieves by ionothermal approach. AICHE Journal, 2008, 54, 280-288.	1.8	31
476	Two fluid model using kinetic theory for modeling of oneâ€step hydrogen production gasifier. AICHE Journal, 2008, 54, 2833-2851.	1.8	7
477	Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochemistry Communications, 2008, 10, 1819-1822.	2.3	217
478	Preparation and characterization of gel polymer electrolytes based on acrylonitrile–methoxy polyethylene glycol (350) monoacrylate–lithium acrylate terpolymers. Electrochimica Acta, 2008, 54, 606-610.	2.6	8
479	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T = (283.15 to 333.15) K. Journal of Chemical & Engineering Data, 2008, 53, 1836-1840.	1.0	32
480	Structure, interaction and property of aminoâ€functionalized imidazolium ILs by molecular dynamics simulation and Ab initio calculation. AICHE Journal, 2007, 53, 3210-3221.	1.8	86
481	Physical Properties of Ionic Liquids: Database and Evaluation. Journal of Physical and Chemical Reference Data, 2006, 35, 1475-1517.	1.9	1,045
482	Dispersion of modified carbon nanotubes in 1-butyl-3-methyl imidazolium tetrafluoroborate. Journal of Materials Science, 2006, 41, 3123-3126.	1.7	6
483	Periodicity and map for discovery of new ionic liquids. Science in China Series B: Chemistry, 2006, 49, 103-115.	0.8	9
484	Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + H2O. Journal of Chemical & Engineering Data, 2004, 49, 760-764.	1.0	215
485	SYNTHESIS OF AZEOTROPE SEPARATION BASED ON GREEN CHEMICAL PRINCIPLES. , 2004, , .		1
486	Infinite Dilution Activity Coefficients in Ethylene Glycol and Ethylene Carbonate. Journal of Chemical & Engineering Data, 2003, 48, 167-170.	1.0	6

#	Article	IF	CITATIONS
487	Preparation of the Catalytic Chitin/Zn Composite by Combined Ionic Liquid–Inorganic Salt Aqueous Solution from Shrimp Shells. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6
488	Hybrid/Tandem Strategy for High-efficient Solar Cell Systems. , 0, , .		0
489	In Situ Electron Transport Layers by a Carboxyl Ionic Liquid-Assisted Microwave Technique for a 20.1% Perovskite Solar Cell. ACS Applied Energy Materials, 0, , .	2.5	5
490	Ionic liquids as a tunable solvent and modifier for biocatalysis. Catalysis Reviews - Science and Engineering, 0, , 1-47.	5.7	15