Ya-Qin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/323325/publications.pdf

Version: 2024-02-01

490 papers

26,521 citations

7568 77 h-index 135 g-index

495 all docs 495 docs citations

495 times ranked

21809 citing authors

#	Article	IF	CITATIONS
1	Physical Properties of Ionic Liquids: Database and Evaluation. Journal of Physical and Chemical Reference Data, 2006, 35, 1475-1517.	4.2	1,045
2	Carbon capture with ionic liquids: overview and progress. Energy and Environmental Science, 2012, 5, 6668.	30.8	731
3	lonic-Liquid-Based CO ₂ Capture Systems: Structure, Interaction and Process. Chemical Reviews, 2017, 117, 9625-9673.	47.7	696
4	Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3, 22739.	3.6	632
5	Multiscale Studies on Ionic Liquids. Chemical Reviews, 2017, 117, 6636-6695.	47.7	584
6	Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43, 7838-7869.	38.1	399
7	Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Letters, 2008, 49, 3588-3591.	1.4	374
8	Activating Câ€Coordinated Iron of Iron Hexacyanoferrate for Zn Hybridâ€lon Batteries with 10 000 ycle Lifespan and Superior Rate Capability. Advanced Materials, 2019, 31, e1901521.	21.0	363
9	Active chemisorption sites in functionalized ionic liquids for carbon capture. Chemical Society Reviews, 2016, 45, 4307-4339.	38.1	356
10	Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chemistry, 2012, 14, 654.	9.0	314
11	A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solidâ€State Lithium Metal Batteries. Advanced Materials, 2020, 32, e2000399.	21.0	292
12	A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Science Advances, 2019, 5, eaaw2322.	10.3	290
13	Achieving Both High Voltage and High Capacity in Aqueous Zincâ€lon Battery for Record High Energy Density. Advanced Functional Materials, 2019, 29, 1906142.	14.9	285
14	Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry, 2019, 21, 3499-3535.	9.0	273
15	A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nature Communications, 2020, 11, 4341.	12.8	257
16	Hydrogen Bonds: A Structural Insight into Ionic Liquids. Chemistry - A European Journal, 2012, 18, 2748-2761.	3.3	254
17	Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chemical Communications, 2016, 52, 6744-6764.	4.1	234
18	A Wholly Degradable, Rechargeable Zn–Ti ₃ C ₂ MXene Capacitor with Superior Anti-Self-Discharge Function. ACS Nano, 2019, 13, 8275-8283.	14.6	224

#	Article	IF	CITATIONS
19	Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catalysis Science and Technology, 2014, 4, 1556.	4.1	222
20	Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochemistry Communications, 2008, 10, 1819-1822.	4.7	217
21	Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + H2O. Journal of Chemical & Engineering Data, 2004, 49, 760-764.	1.9	215
22	Insight into the Cosolvent Effect of Cellulose Dissolution in Imidazolium-Based Ionic Liquid Systems. Journal of Physical Chemistry B, 2013, 117, 9042-9049.	2.6	193
23	Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects. Chemical Science, 2018, 9, 4027-4043.	7.4	189
24	Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy and Environmental Science, 2021, 14, 672-687.	30.8	188
25	Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries. Electrochimica Acta, 2010, 55, 4632-4636.	5.2	185
26	<i>In Situ</i> Charge Exfoliated Soluble Covalent Organic Framework Directly Used for Zn–Air Flow Battery. ACS Nano, 2019, 13, 878-884.	14.6	182
27	Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chemistry, 2014, 16, 3071.	9.0	180
28	Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene) Tj ETQq0 0 0 r	gBT _/ Overl	ock 10 Tf 50 :
29	Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chemistry, 2009, 11, 1568.	9.0	173
30	Protic ionic liquid [Bim] [NTf ₂] with strong hydrogen bond donating ability for highly efficient ammonia absorption. Green Chemistry, 2017, 19, 937-945.	9.0	156
31	Ionic liquid clusters: structure, formation mechanism, and effect on the behavior of ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 5893-5906.	2.8	155
32	Influence of anionic structure on the dissolution of chitosan in 1-butyl-3-methylimidazolium-based ionic liquids. Green Chemistry, 2011, 13, 3446.	9.0	154
33	First-Row Transition Metal-Containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly(ethylene terephthalate) (PET). ACS Sustainable Chemistry and Engineering, 2015, 3, 340-348.	6.7	151
34	Understanding Structures and Hydrogen Bonds of Ionic Liquids at the Electronic Level. Journal of Physical Chemistry B, 2012, 116, 1007-1017.	2.6	150
35	A Novel Dual Amino-Functionalized Cation-Tethered Ionic Liquid for CO ₂ Capture. Industrial & Description of the Country Research, 2013, 52, 5835-5841.	3.7	145
36	Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Frontiers in Energy Research, 2019, 7, .	2.3	145

#	Article	IF	CITATIONS
37	Characterization and thermal behavior of kaolin. Journal of Thermal Analysis and Calorimetry, 2011, 105, 157-160.	3.6	142
38	Toxicity of ionic liquids: Database and prediction via quantitative structure–activity relationship method. Journal of Hazardous Materials, 2014, 278, 320-329.	12.4	142
39	Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. Journal of Materials Chemistry A, 2016, 4, 4738-4744.	10.3	139
40	Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy and Environmental Science, 2016, 9, 1012-1023.	30.8	138
41	Density, Viscosity, and Performances of Carbon Dioxide Capture in 16 Absorbents of Amine + Ionic Liquid + H ₂ O, Ionic Liquid + H ₂ O, and Amine + H ₂ O Systems. Journal of Chemical & Description Data, 2010, 55, 3513-3519.	1.9	137
42	lonic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. Journal of the American Chemical Society, 2017, 139, 17387-17396.	13.7	130
43	Highly selective electroreduction of N ₂ and CO ₂ to urea over artificial frustrated Lewis pairs. Energy and Environmental Science, 2021, 14, 6605-6615.	30.8	130
44	Urea as an efficient and reusable catalyst for the glycolysis of poly(ethylene terephthalate) wastes and the role of hydrogen bond in this process. Green Chemistry, 2012, 14, 2559.	9.0	129
45	Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Materials Chemistry and Physics, 2011, 128, 220-227.	4.0	126
46	Efficient and reversible absorption of ammonia by cobalt ionic liquids through Lewis acid–base and cooperative hydrogen bond interactions. Green Chemistry, 2018, 20, 2075-2083.	9.0	121
47	Lewis Acid–Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc) ₂ Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 3292-3300.	6.7	121
48	Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids. RSC Advances, 2015, 5, 81362-81370.	3.6	119
49	Electrodeposition in Ionic Liquids. ChemPhysChem, 2016, 17, 335-351.	2.1	117
50	Thermodynamic Modeling and Assessment of Ionic Liquid-Based CO ₂ Capture Processes. Industrial & Engineering Chemistry Research, 2014, 53, 11805-11817.	3.7	112
51	Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chemistry, 2020, 22, 3122-3131.	9.0	111
52	Electrolyte for lithium protection: From liquid to solid. Green Energy and Environment, 2019, 4, 360-374.	8.7	110
53	Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy and Environment, 2021, 6, 314-328.	8.7	108
54	Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angewandte Chemie - International Edition, 2021, 60, 22148-22165.	13.8	107

#	Article	IF	Citations
55	Synergistic Regulation of Polysulfides Conversion and Deposition by MOFâ€Derived Hierarchically Ordered Carbonaceous Composite for Highâ€Energy Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1900875.	14.9	104
56	Solubilities of ammonia in basic imidazolium ionic liquids. Fluid Phase Equilibria, 2010, 297, 34-39.	2.5	102
57	A new fragment contributionâ€corresponding states method for physicochemical properties prediction of ionic liquids. AICHE Journal, 2013, 59, 1348-1359.	3.6	102
58	Effects of Cationic Structure on Cellulose Dissolution in Ionic Liquids: A Molecular Dynamics Study. ChemPhysChem, 2012, 13, 3126-3133.	2.1	101
59	Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO ₂ separation. RSC Advances, 2017, 7, 6422-6431.	3.6	100
60	A DFT study on lignin dissolution in imidazolium-based ionic liquids. RSC Advances, 2017, 7, 12670-12681.	3.6	100
61	Efficient transformation of CO ₂ to cyclic carbonates using bifunctional protic ionic liquids under mild conditions. Green Chemistry, 2019, 21, 3456-3463.	9.0	100
62	lonic Liquid Design and Process Simulation for Decarbonization of Shale Gas. Industrial & Engineering Chemistry Research, 2016, 55, 5931-5944.	3.7	97
63	Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chemistry, 2019, 21, 9-35.	9.0	96
64	Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts. Green Chemistry, 2019, 21, 897-906.	9.0	95
65	Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Physical Chemistry Chemical Physics, 2015, 17, 17894-17905.	2.8	92
66	Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a Dissolution-Degradation Strategy. Industrial & Engineering Chemistry Research, 2018, 57, 16239-16245.	3.7	92
67	Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production. Green Chemistry, 2017, 19, 1462-1489.	9.0	91
68	Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Scientific Reports, 2014, 4, 6414.	3.3	90
69	Hydroxyl-Functionalized Ionic Liquid Promoted CO ₂ Fixation According to Electrostatic Attraction and Hydrogen Bonding Interaction. Industrial & Engineering Chemistry Research, 2014, 53, 8426-8435.	3.7	89
70	Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a bio-based polyester monomer. Catalysis Science and Technology, 2018, 8, 164-175.	4.1	88
71	Structure, interaction and property of aminoâ€functionalized imidazolium ILs by molecular dynamics simulation and Ab initio calculation. AICHE Journal, 2007, 53, 3210-3221.	3.6	86
72	Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution. Journal of Materials Chemistry, 2012, 22, 23815.	6.7	83

#	Article	IF	CITATIONS
73	Novel Ether-Functionalized Pyridinium Chloride Ionic Liquids for Efficient SO ₂ Capture. Industrial & Engineering Chemistry Research, 2014, 53, 16832-16839.	3.7	83
74	lonic liquids tailored amine aqueous solution for pre-combustion CO2 capture: Role of imidazolium-based ionic liquids. Applied Energy, 2015, 154, 771-780.	10.1	83
75	Highly Selective Capture of CO ₂ by Ether-Functionalized Pyridinium Ionic Liquids with Low Viscosity. Energy & Delta (2015), 29, 6039-6048.	5.1	82
76	Reversible Hydrophobic–Hydrophilic Transition of Ionic Liquids Driven by Carbon Dioxide. Angewandte Chemie - International Edition, 2015, 54, 7265-7269.	13.8	81
77	Functionalized ionic liquid membranes for CO ₂ separation. Chemical Communications, 2018, 54, 12671-12685.	4.1	81
78	Direct conversion of shrimp shells to $\langle i \rangle O \langle i \rangle$ -acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chemistry, 2019, 21, 87-98.	9.0	81
79	Why Only Ionic Liquids with Unsaturated Heterocyclic Cations Can Dissolve Cellulose: A Simulation Study. ACS Sustainable Chemistry and Engineering, 2017, 5, 3417-3428.	6.7	80
80	lonic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2018, 20, 3232-3241.	9.0	80
81	Enhanced NH ₃ capture by imidazoliumâ€based protic ionic liquids with different anions and cation substituents. Journal of Chemical Technology and Biotechnology, 2018, 93, 1228-1236.	3.2	78
82	Effects of anionic structure on the dissolution of cellulose in ionic liquids revealed by molecular simulation. Carbohydrate Polymers, 2013, 94, 723-730.	10.2	77
83	Boron-doped melamine-derived carbon nitrides tailored by ionic liquids for catalytic conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2017, 19, 2957-2965.	9.0	77
84	Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Materials, 2022, 44, 93-103.	18.0	77
85	Highly Efficient Electrocatalytic CO ₂ Reduction to C ₂₊ Products on a Poly(ionic liquid)â€Based Cu ⁰ –Cu ^I Tandem Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	77
86	lonic liquids for absorption and separation of gases: An extensive database and a systematic screening method. AICHE Journal, 2017, 63, 1353-1367.	3.6	76
87	Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 11961.	10.3	75
88	Facile synthesis of Fe ₃ O ₄ nanorod decorated reduced graphene oxide (RGO) for supercapacitor application. RSC Advances, 2016, 6, 107057-107064.	3.6	75
89	Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2. Tetrahedron Letters, 2015, 56, 1416-1419.	1.4	74
90	A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. Journal of Materials Chemistry, 2012, 22, 3319.	6.7	73

#	Article	IF	Citations
91	Three-dimensional hierarchical pompon-like Co ₃ O ₄ porous spheres for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13801-13804.	10.3	7 3
92	Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy and Environmental Science, 2022, 15, 2084-2095.	30.8	73
93	An ionic liquid extraction process for the separation of indole from wash oil. Green Chemistry, 2015, 17, 3783-3790.	9.0	70
94	Temperature-Controlled Reaction–Separation for Conversion of CO ₂ to Carbonates with Functional Ionic Liquids Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 3081-3086.	6.7	69
95	Formation of C–C bonds for the production of bio-alkanes under mild conditions. Green Chemistry, 2014, 16, 3589-3595.	9.0	68
96	Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol. Green Chemistry, 2018, 20, 4339-4348.	9.0	68
97	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	21.0	68
98	A Novel cathode material based on polyaniline used for lithium/sulfur secondary battery. Synthetic Metals, 2010, 160, 2041-2044.	3.9	67
99	Highly Efficient Dissolution of Wool Keratin by Dimethylphosphate Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2015, 3, 2925-2932.	6.7	66
100	Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chemistry, 2016, 18, 2341-2352.	9.0	66
101	A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. Journal of Materials Chemistry A, 2015, 3, 4938-4944.	10.3	65
102	Solubilities of CO2, CH4, H2, CO and N2 in choline chloride/urea. Green Energy and Environment, 2016, 1, 195-200.	8.7	65
103	Tuning the Hydrophilicity and Hydrophobicity of the Respective Cation and Anion: Reversible Phase Transfer of Ionic Liquids. Angewandte Chemie - International Edition, 2016, 55, 7934-7938.	13.8	65
104	Spider-Web-Inspired Nanocomposite-Modified Separator: Structural and Chemical Cooperativity Inhibiting the Shuttle Effect in Li–S Batteries. ACS Nano, 2019, 13, 1563-1573.	14.6	65
105	Sustainable Advanced Fenton-like Catalysts Based on Mussel-Inspired Magnetic Cellulose Nanocomposites to Effectively Remove Organic Dyes and Antibiotics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51952-51959.	8.0	64
106	Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell. Bioresource Technology, 2016, 214, 722-728.	9.6	63
107	DBN-based ionic liquids with high capability for the dissolution of wool keratin. RSC Advances, 2017, 7, 1981-1988.	3.6	62
108	Improving SO ₂ capture by tuning functional groups on the cation of pyridinium-based ionic liquids. RSC Advances, 2015, 5, 2470-2478.	3.6	61

#	Article	IF	CITATIONS
109	Conversion of biomass derived valerolactone into high octane number gasoline with an ionic liquid. Green Chemistry, 2015, 17, 1065-1070.	9.0	60
110	Highly Active Ni-Based Catalyst Derived from Double Hydroxides Precursor for Low Temperature CO ₂ Methanation. Industrial & Engineering Chemistry Research, 2018, 57, 9102-9111.	3.7	60
111	High CO2 absorption capacity of metal-based ionic liquids: A molecular dynamics study. Green Energy and Environment, 2021, 6, 253-260.	8.7	60
112	Catalytic Methanation of Carbon Dioxide by Active Oxygen Material Ce _x Zr _{1â^'x} O ₂ Supported NiCo Bimetallic Nanocatalysts. AICHE Journal, 2013, 59, 2567-2576.	3.6	59
113	Highly Efficient Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids. ChemSusChem, 2019, 12, 2715-2724.	6.8	58
114	1,3-Dimethylimidazolium-2-carboxylate: a zwitterionic salt for the efficient synthesis of vicinal diols from cyclic carbonates. Green Chemistry, 2014, 16, 3297.	9.0	57
115	Improved Catalytic Lifetime of H ₂ SO ₄ for Isobutane Alkylation with Trace Amount of Ionic Liquids Buffer. Industrial & Engineering Chemistry Research, 2015, 54, 1464-1469.	3.7	57
116	Extractive desulfurization of fuel using N-butylpyridinium-based ionic liquids. RSC Advances, 2015, 5, 30234-30238.	3.6	57
117	Catalysts, kinetics and process optimization for the synthesis of methyl acrylate over Cs–P/γ-Al ₂ O ₃ . Catalysis Science and Technology, 2016, 6, 6417-6430.	4.1	57
118	Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin. Biomaterials, 2018, 167, 205-215.	11.4	57
119	The Effect of Concentration of Lithium Salt on the Structural and Transport Properties of Ionic Liquid-Based Electrolytes. Frontiers in Chemistry, 2019, 7, 945.	3.6	56
120	Study on Extraction Asphaltenes from Direct Coal Liquefaction Residue with Ionic Liquids. Industrial & Liquids Research, 2011, 50, 10278-10282.	3.7	55
121	Synthesis of Methyl Methacrylate by Aldol Condensation of Methyl Propionate with Formaldehyde Over Acid–Base Bifunctional Catalysts. Catalysis Letters, 2013, 143, 829-838.	2.6	55
122	lonic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery. Journal of Materials Chemistry A, 2018, 6, 18479-18487.	10.3	55
123	Fabrication of Multilayered Molecularly Imprinted Membrane for Selective Recognition and Separation of Artemisinin. ACS Sustainable Chemistry and Engineering, 2019, 7, 3127-3137.	6.7	55
124	Anion-Based pH Responsive Ionic Liquids: Design, Synthesis, and Reversible Self-Assembling Structural Changes in Aqueous Solution. Langmuir, 2014, 30, 3971-3978.	3.5	54
125	Quantitative Change in Disulfide Bonds and Microstructure Variation of Regenerated Wool Keratin from Various Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2017, 5, 2614-2622.	6.7	54
126	Selective Extraction of Lithium from Spent Lithium Batteries by Functional Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 7022-7029.	6.7	54

#	Article	IF	CITATIONS
127	Gas–liquid massâ€transfer properties in CO ₂ absorption system with ionic liquids. AICHE Journal, 2014, 60, 2929-2939.	3.6	53
128	A new class of ion-ion interaction: Z-bond. Science China Chemistry, 2015, 58, 495-500.	8.2	53
129	Hydrogen-Bonding Interactions in Pyridinium-Based Ionic Liquids and Dimethyl Sulfoxide Binary Systems: A Combined Experimental and Computational Study. ACS Omega, 2018, 3, 1823-1833.	3.5	53
130	A promising method for electrodeposition of aluminium on stainless steel in ionic liquid. AICHE Journal, 2009, 55, 783-796.	3.6	52
131	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols. Journal of Chemical & Engineering Data, 2014, 59, 2377-2388.	1.9	52
132	One-Step Conversion of Biomass-Derived Furanics into Aromatics by BrÃ, nsted Acid Ionic Liquids at Room Temperature. ACS Sustainable Chemistry and Engineering, 2018, 6, 2541-2551.	6.7	52
133	Screening of Ionic Liquids for Keratin Dissolution by Means of COSMO-RS and Experimental Verification. ACS Sustainable Chemistry and Engineering, 2018, 6, 17314-17322.	6.7	52
134	Polymeric ionic liquids tailored by different chain groups for the efficient conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2019, 21, 2352-2361.	9.0	52
135	Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nature Communications, 2020, 11, 4450.	12.8	52
136	Influence of Microstructure and Interaction on Viscosity of Ionic Liquids. Industrial & Description of Engineering Chemistry Research, 2015, 54, 3505-3514.	3.7	51
137	Pebax \hat{A}° /TSIL blend thin film composite membranes for CO2 separation. Science China Chemistry, 2016, 59, 538-546.	8.2	51
138	Tailoring Molecular Weight of Bioderived Polycarbonates via Bifunctional Ionic Liquids Catalysts under Metal-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 2684-2693.	6.7	51
139	Encapsulation of multiple enzymes in a metal–organic framework with enhanced electro-enzymatic reduction of CO ₂ to methanol. Green Chemistry, 2021, 23, 2362-2371.	9.0	51
140	ZnBr ₂ -Based Choline Chloride Ionic Liquid for Efficient Fixation of CO ₂ to Cyclic Carbonate. Synthetic Communications, 2012, 42, 2564-2573.	2.1	50
141	Ionic liquid enhanced alkylation of iso-butane and 1-butene. Catalysis Today, 2013, 200, 30-35.	4.4	50
142	Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. Nano Research, 2018, 11 , 4673-4685.	10.4	50
143	Selective catalytic tailoring of the H unit in herbaceous lignin for methyl <i>p</i> -hydroxycinnamate production over metal-based ionic liquids. Green Chemistry, 2018, 20, 3743-3752.	9.0	50
144	Gold nanoparticles supported on Ce–Zr oxides for the oxidative esterification of aldehydes to esters. Catalysis Science and Technology, 2015, 5, 3682-3692.	4.1	49

#	Article	IF	Citations
145	Trace Water as Prominent Factor to Induce Peptide Selfâ€Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids. Small, 2017, 13, 1702175.	10.0	49
146	Selective aerobic oxidative cleavage of lignin C C bonds over novel hierarchical Ce-Cu/MFI nanosheets. Applied Catalysis B: Environmental, 2020, 279, 119343.	20.2	49
147	Protic vs aprotic ionic liquid for CO2 fixation: A simulation study. Green Energy and Environment, 2020, 5, 183-194.	8.7	49
148	Isobutane alkylation using acidic ionic liquid catalysts. Catalysis Communications, 2012, 26, 68-71.	3.3	48
149	Effect of small amount of water on the dynamics properties and microstructures of ionic liquids. AICHE Journal, 2017, 63, 2248-2256.	3.6	48
150	High Oxygen Reduction Reaction Performances of Cathode Materials Combining Polyoxometalates, Coordination Complexes, and Carboneous Supports. ACS Applied Materials & Interfaces, 2017, 9, 38486-38498.	8.0	48
151	Molecular dynamics simulation of desulfurization by ionic liquids. AICHE Journal, 2010, 56, 2983-2996.	3.6	47
152	CL-20 hosted in graphene foam as a high energy material with low sensitivity. RSC Advances, 2015, 5, 98925-98928.	3.6	47
153	Ether-functionalized ionic liquid based composite membranes for carbon dioxide separation. RSC Advances, 2016, 6, 45184-45192.	3.6	47
154	Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C–C coupling reactions. Green Chemistry, 2020, 22, 2605-2612.	9.0	47
155	Construction of a PPIL@COF coreâ€"shell composite with enhanced catalytic activity for CO ₂ conversion. Green Chemistry, 2021, 23, 2411-2419.	9.0	47
156	Effect of Small Amount of Water on CO ₂ Bubble Behavior in Ionic Liquid Systems. Industrial & Engineering Chemistry Research, 2014, 53, 428-439.	3.7	46
157	One-Pot Synthesis of 2,5-Furandicarboxylic Acid from Fructose in Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 1851-1858.	3.7	46
158	12-Tungstophosphoric acid niched in Zr-based metal-organic framework: a stable and efficient catalyst for Friedel-Crafts acylation. Science China Chemistry, 2018, 61, 402-411.	8.2	46
159	Hollow spherical carbonized polypyrrole/sulfur composite cathode materials for lithium/sulfur cells with long cycle life. Journal of Power Sources, 2014, 248, 337-342.	7.8	44
160	Molecular Insights into the Regulatable Interfacial Property and Flow Behavior of Confined Ionic Liquids in Graphene Nanochannels. Small, 2019, 15, e1804508.	10.0	44
161	Predicting H ₂ S solubility in ionic liquids by the quantitative structure–property relationship method using S _{σ-profile} molecular descriptors. RSC Advances, 2016, 6, 70405-70413.	3.6	43
162	Hypergolic fuels based on water-stable borohydride cluster anions with ultralow ignition delay times. Journal of Materials Chemistry A, 2017, 5, 13341-13346.	10.3	43

#	Article	IF	Citations
163	Inhibiting degradation of cellulose dissolved in ionic liquids <i>via</i> amino acids. Green Chemistry, 2019, 21, 2777-2787.	9.0	43
164	Effect of nicotinamide on electrodeposition of Al from aluminium chloride (AlCl3)-1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquids. Journal of Solid State Electrochemistry, 2014, 18, 257-267.	2.5	42
165	High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47163-47173.	8.0	42
166	Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. Jacs Au, 2022, 2, 543-561.	7.9	42
167	Effects of Support for Vanadium Phosphorus Oxide Catalysts on Vapor-Phase Aldol Condensation of Methyl Acetate with Formaldehyde. Industrial & Engineering Chemistry Research, 2016, 55, 12693-12702.	3.7	41
168	Low energy recycling of ionic liquids <i>via</i> freeze crystallization during cellulose spinning. Green Chemistry, 2018, 20, 493-501.	9.0	41
169	Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic [Bmim]PF ₆ -Ru/SBA-15 catalysis under acid free conditions. Green Chemistry, 2019, 21, 597-605.	9.0	41
170	Transesterification of Isosorbide with Dimethyl Carbonate Catalyzed by Taskâ€Specific Ionic Liquids. ChemSusChem, 2019, 12, 1169-1178.	6.8	41
171	Regulating electrochemical CO2RR selectivity at industrial current densities by structuring copper@poly(ionic liquid) interface. Applied Catalysis B: Environmental, 2021, 297, 120471.	20.2	41
172	Electrodeposition of zinc coatings from the solutions of zinc oxide in imidazolium chloride/urea mixtures. Science China Chemistry, 2012, 55, 1587-1597.	8.2	40
173	Hydrogen-bonding interactions between a pyridinium-based ionic liquid [C4Py][SCN] and dimethyl sulfoxide. Chemical Engineering Science, 2015, 121, 169-179.	3.8	40
174	Using Sub/Supercritical CO ₂ as "Phase Separation Switchâ€for the Efficient Production of 5-Hydroxymethylfurfural from Fructose in an Ionic Liquid/Organic Biphasic System. ACS Sustainable Chemistry and Engineering, 2016, 4, 557-563.	6.7	40
175	A Simple and Mild Approach for the Synthesis of <i>p</i> à€Xylene from Bioâ€Based 2,5â€Dimethyfuran by Using Metal Triflates. ChemSusChem, 2017, 10, 2394-2401.	6.8	40
176	Controllable preparation of phosphonium-based polymeric ionic liquids as highly selective nanocatalysts for the chemical conversion of CO ₂ with epoxides. Green Chemistry, 2017, 19, 2184-2193.	9.0	40
177	A new era of precise liquid regulation: Quasi-liquid. Green Energy and Environment, 2017, 2, 329-330.	8.7	40
178	LiF as an Artificial SEI Layer to Enhance the High-Temperature Cycle Performance of Li ₄ Ti ₅ O ₁₂ . Langmuir, 2017, 33, 11164-11169.	3.5	40
179	Nature-Inspired 2D-Mosaic 3D-Gradient Mesoporous Framework: Bimetal Oxide Dual-Composite Strategy toward Ultrastable and High-Capacity Lithium Storage. ACS Nano, 2018, 12, 2035-2047.	14.6	40
180	The confined [Bmim][BF ₄] ionic liquid flow through graphene oxide nanochannels: a molecular dynamics study. Physical Chemistry Chemical Physics, 2018, 20, 17773-17780.	2.8	40

#	Article	IF	CITATIONS
181	Ceria imparts superior low temperature activity to nickel catalysts for CO ₂ methanation. Catalysis Science and Technology, 2019, 9, 5636-5650.	4.1	40
182	Ionic Liquid Incorporated Metal Organic Framework for High Ionic Conductivity over Extended Temperature Range. ACS Sustainable Chemistry and Engineering, 2019, 7, 7892-7899.	6.7	40
183	Preparation of MWCNTs-Graphene-Cellulose Fiber with Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 20013-20021.	6.7	40
184	Ionic Liquidâ€Based Redox Active Electrolytes for Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	40
185	Is There Any Preferential Interaction of Ions of Ionic Liquids with DMSO and H ₂ O? A Comparative Study from MD Simulation. Journal of Physical Chemistry B, 2015, 119, 6686-6695.	2.6	39
186	Rapid and productive extraction of high purity cellulose material via selective depolymerization of the lignin-carbohydrate complex at mild conditions. Green Chemistry, 2017, 19, 2234-2243.	9.0	39
187	Base-free preparation of low molecular weight chitin from crab shell. Carbohydrate Polymers, 2018, 190, 148-155.	10.2	39
188	Multi-scale simulation of the 1,3-butadiene extraction separation process with an ionic liquid additive. Green Chemistry, 2010, 12, 1263.	9.0	38
189	Structure of ionic liquids under external electric field: a molecular dynamics simulation. Molecular Simulation, 2012, 38, 172-178.	2.0	38
190	Catalysts, Process Optimization, and Kinetics for the Production of Methyl Acrylate over Vanadium Phosphorus Oxide Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 5860-5871.	3.7	38
191	Excess spectroscopy and its applications in the study of solution chemistry. Pure and Applied Chemistry, 2020, 92, 1611-1626.	1.9	38
192	Unraveling the Synergistic Coupling Mechanism of Li ⁺ Transport in an "lonogelâ€in eramic― Hybrid Solid Electrolyte for Rechargeable Lithium Metal Battery. Advanced Functional Materials, 2022, 32, 2108706.	14.9	38
193	Density, Excess Molar Volume and Conductivity of Binary Mixtures of the Ionic Liquid 1,2-Dimethyl-3-hexylimidazolium Bis(trifluoromethylsulfonyl)imide and Dimethyl Carbonate. Journal of Chemical & Dimethyl Carbonate. Journal of Chemical & Data, 2011, 56, 27-30.	1.9	37
194	The Hydrogen-Bonding Interactions between 1-Ethyl-3-Methylimidazolium Lactate Ionic Liquid and Methanol. Australian Journal of Chemistry, 2013, 66, 50.	0.9	37
195	Synergistic Effects in Nanoengineered HNb ₃ O ₈ /Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO ₂ into Renewable Fuels. Langmuir, 2016, 32, 254-264.	3.5	37
196	ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 8358-8365.	10.3	37
197	Metalâ€Free Photochemical Degradation of Ligninâ€Derived Aryl Ethers and Lignin by Autologous Radicals through Ionic Liquid Induction. ChemSusChem, 2019, 12, 4005-4013.	6.8	37
198	Enhancement of transdermal delivery of artemisinin using microemulsion vehicle based on ionic liquid and lidocaine ibuprofen. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110886.	5.0	37

#	Article	IF	CITATIONS
199	Molecular simulations of phosphonium-based ionic liquid. Molecular Simulation, 2010, 36, 79-86.	2.0	36
200	Synthesis of isosorbide-based polycarbonates via melt polycondensation catalyzed by quaternary ammonium ionic liquids. Chinese Journal of Catalysis, 2017, 38, 908-917.	14.0	36
201	The Chitin/Keggin-type heteropolyacid hybrid microspheres as catalyst for oxidation of methacrolein to methacrylic acid. Chemical Engineering Journal, 2018, 334, 1657-1667.	12.7	36
202	Highly Porous Metalloporphyrin Covalent Ionic Frameworks with Wellâ€Defined Cooperative Functional Groups as Excellent Catalysts for CO ₂ Cycloaddition. Chemistry - A European Journal, 2019, 25, 9052-9059.	3.3	36
203	Screening Deep Eutectic Solvents for CO2 Capture With COSMO-RS. Frontiers in Chemistry, 2020, 8, 82.	3.6	36
204	SO ₂ -Induced Variations in the Viscosity of Ionic Liquids Investigated by in Situ Fourier Transform Infrared Spectroscopy and Simulation Calculations. Industrial & Degineering Chemistry Research, 2015, 54, 10854-10862.	3.7	35
205	Hydrogen Sulfide Solubility in Ionic Liquids (ILs): An Extensive Database and a New ELM Model Mainly Established by Imidazolium-Based ILs. Journal of Chemical & Established by Imidazolium-Based ILs. Journal of Chemical & Ingineering Data, 2016, 61, 3970-3978.	1.9	35
206	Theoretical studies on glycolysis of poly(ethylene terephthalate) in ionic liquids. RSC Advances, 2018, 8, 8209-8219.	3.6	35
207	Unveiling of the energy storage mechanisms of multi-modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes. Electrochimica Acta, 2019, 313, 532-543.	5.2	35
208	Inâ€Built Quasiâ€Solidâ€State Polyâ€Ether Electrolytes Enabling Stable Cycling of Highâ€Voltage and Wideâ€Temperature Li Metal Batteries. Advanced Functional Materials, 2021, 31, 2102347.	14.9	35
209	Vinyl-functionalized imidazolium ionic liquids as new electrolyte additives for high-voltage Li-ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 2839-2848.	2.5	34
210	Mechanistic study on the cellulose dissolution in ionic liquids by density functional theory. Chinese Journal of Chemical Engineering, 2015, 23, 1894-1906.	3.5	34
211	Photocatalytic reduction of CO ₂ with H ₂ O on CuO/TiO ₂ catalysts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 420-426.	2.3	34
212	Improved electrochemical performance in nanoengineered pomegranate-shaped Fe3O4/RGO nanohybrids anode material. Journal of Materials Science, 2017, 52, 3233-3243.	3.7	34
213	Lithium Recovery from the Mother Liquor Obtained in the Process of Li ₂ CO ₃ Production. Industrial & Engineering Chemistry Research, 2019, 58, 1363-1372.	3.7	34
214	Structure optimization of tailored ionic liquids and process simulation for shale gas separation. AICHE Journal, 2020, 66, e16794.	3.6	34
215	Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Materials Chemistry Frontiers, 2021, 5, 1771-1794.	5.9	34
216	Mechanism of fixation of CO2 in the presence of hydroxyl-functionalized quaternary ammonium salts. Journal of CO2 Utilization, 2015, 10, 113-119.	6.8	33

#	Article	IF	CITATIONS
217	Reversible Phase Transfer of Carbon Dots between an Organic Phase and Aqueous Solution Triggered by CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 3687-3691.	13.8	33
218	Synthesis of high-molecular weight isosorbide-based polycarbonates through efficient activation of endo-hydroxyl groups by an ionic liquid. Green Chemistry, 2019, 21, 3891-3901.	9.0	33
219	Aromatic Esterâ€Functionalized Ionic Liquid for Highly Efficient CO ₂ Electrochemical Reduction to Oxalic Acid. ChemSusChem, 2020, 13, 4900-4905.	6.8	33
220	Ultralong cycling and wide temperature range of lithium metal batteries enabled by solid polymer electrolytes interpenetrated with a poly(liquid crystal) network. Journal of Materials Chemistry A, 2021, 9, 6232-6241.	10.3	33
221	Insights into the electrochemical degradation of phenolic lignin model compounds in a protic ionic liquid–water system. Green Chemistry, 2021, 23, 1665-1677.	9.0	33
222	State of the art of ionic liquidâ€modified adsorbents for <scp>CO₂</scp> capture and separation. AICHE Journal, 2022, 68, e17500.	3.6	33
223	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T = (283.15 to 333.15) K. Journal of Chemical & Engineering Data, 2008, 53, 1836-1840.	1.9	32
224	Efficient extraction of direct coal liquefaction residue with the [bmim]Cl/NMP mixed solvent. RSC Advances, 2011, 1, 1579.	3.6	32
225	Microscopic Structure, Interaction, and Properties of a Guanidinium-Based Ionic Liquid and Its Mixture with CO ₂ . Industrial & Engineering Chemistry Research, 2011, 50, 8323-8332.	3.7	32
226	Green process for methacrolein separation with ionic liquids in the production of methyl methacrylate. AICHE Journal, 2011, 57, 2388-2396.	3.6	32
227	B ₁₂ H ₁₂ ^{2â€"} â€Based Metal (Cu ²⁺ , Ni ²⁺ ,) Tj ETC	Qq1 1 0.78 2.0	84314 rgBT 32
228	<i>In situ</i> generated 3D hierarchical Co ₃ O ₄ @MnO ₂ coreâ€"shell hybrid materials: self-assembled fabrication, morphological control and energy applications. Journal of Materials Chemistry A, 2019, 7, 5967-5980.	10.3	32
229	A facile ionic liquid approach to prepare cellulose-rich aerogels directly from corn stalks. Green Chemistry, 2019, 21, 2699-2708.	9.0	32
230	Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: an activity, stability and mechanism study. Green Chemistry, 2021, 23, 6898-6925.	9.0	32
231	Simple and safe synthesis of microporous aluminophosphate molecular sieves by ionothermal approach. AICHE Journal, 2008, 54, 280-288.	3.6	31
232	Facile synthesis of SnO2 nanocrystals coated conducting polymer nanowires for enhanced lithium storage. Journal of Power Sources, 2012, 219, 199-203.	7.8	31
233	Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production. Journal of Chemical Technology and Biotechnology, 2014, 89, 1898-1909.	3.2	31
234	Nitrogen-rich energetic 4-R-5-nitro-1,2,3-triazolate salts (R = –CH ₃ , –NH ₂ ,) Tj ETQq materials. Journal of Materials Chemistry A, 2015, 3, 14768-14778.	ηΟ Ο Ο rgBT 10.3	Overlock 1

materials. Journal of Materials Chemistry A, 2015, 3, 14768-14778.

#	Article	IF	CITATIONS
235	Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides. Science China Chemistry, 2015, 58, 738-746.	8.2	31
236	Rodlike Micelle Structure and Formation of Ionic liquid in Aqueous Solution by Molecular Simulation. Industrial & Engineering Chemistry Research, 2015, 54, 1681-1688.	3.7	31
237	Anionic Clusters Enhanced Catalytic Performance of Protic Acid Ionic Liquids for Isobutane Alkylation. Industrial & Engineering Chemistry Research, 2016, 55, 8271-8280.	3.7	31
238	Core–Shell Structured <i>o</i> -LiMnO ₂ @Li ₂ CO ₃ Nanosheet Array Cathode for High-Performance, Wide-Temperature-Tolerance Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 16116-16124.	8.0	31
239	Synthesis of Cyclic Carbonate Catalyzed by DBU Derived Basic Ionic Liquids. Chinese Journal of Chemistry, 2018, 36, 293-298.	4.9	31
240	Ultrasonic assisted extraction of artemisinin from <i>Artemisia Annua</i> L. using monoether-based solvents. Green Chemistry, 2018, 20, 713-723.	9.0	31
241	Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2 SiO /Graphite lithium-ion batteries. Journal of Power Sources, 2019, 439, 227056.	7.8	31
242	Low-temperature and low-pressure fuel hydrodesulfurization by solid catalyst coupling with ionic liquids. Fuel, 2014, 134, 74-80.	6.4	30
243	Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids. Cellulose, 2018, 25, 3241-3254.	4.9	30
244	An effective polysulfides bridgebuilder to enable long-life lithium-sulfur flow batteries. Nano Energy, 2018, 51, 113-121.	16.0	30
245	Role of Hydrogen Bonds in Ionic-Liquid-Mediated Extraction of Natural Bioactive Homologues. Industrial & Degineering Chemistry Research, 2012, 51, 5299-5308.	3.7	29
246	Aluminum Deposition from Lewis Acidic 1â€Butylâ€3â€Methylimidazolium Chloroaluminate Ionic Liquid ([Bmim]Cl/AlCl ₃) Modified with Methyl Nicotinate. ChemElectroChem, 2015, 2, 1794-1798.	3.4	29
247	Thermodynamics and separation process for quaternary acrylic systems. AICHE Journal, 2016, 62, 228-240.	3.6	29
248	Biomethane production system: Energetic analysis of various scenarios. Bioresource Technology, 2016, 206, 155-163.	9.6	29
249	Ru nanoparticles stabilized by ionic liquids supported onto silica: highly active catalysts for low-temperature CO ₂ methanation. Green Chemistry, 2018, 20, 4932-4945.	9.0	29
250	Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries. Ionics, 2018, 24, 3691-3698.	2.4	29
251	Insights into the solvation and dynamic behaviors of a lithium salt in organic- and ionic liquid-based electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 19216-19225.	2.8	29
252	Advances in bio-nylon 5X: discovery of new lysine decarboxylases for the high-level production of cadaverine. Green Chemistry, 2020, 22, 8656-8668.	9.0	29

#	Article	IF	CITATIONS
253	Physicochemical Characterization of MF _{<i>m</i>} ^{â€"} -Based Ammonium Ionic Liquids. Journal of Chemical & amp; Engineering Data, 2013, 58, 1505-1515.	1.9	28
254	Insight into the Relationship between Viscosity and Hydrogen Bond of a Series of Imidazolium Ionic Liquids: A Molecular Dynamics and Density Functional Theory Study. Industrial & Engineering Chemistry Research, 2019, 58, 18848-18854.	3.7	28
255	A non-phosgene process for bioderived polycarbonate with high molecular weight and advanced property profile synthesized using amino acid ionic liquids as catalysts. Green Chemistry, 2020, 22, 2534-2542.	9.0	28
256	Colorless BHET obtained from PET by modified mesoporous catalyst ZnO/SBA-15. Chemical Engineering Science, 2022, 248, 117109.	3.8	28
257	Study on the recovery of ionic liquids from dilute effluent by electrodialysis method and the fouling of cation-exchange membrane. Science China Chemistry, 2013, 56, 1811-1816.	8.2	27
258	A self-stabilized suspension catholyte to enable long-term stable Li–S flow batteries. Journal of Materials Chemistry A, 2017, 5, 12904-12913.	10.3	27
259	Effect of Metal Ion in Bulk VPO in Aldol Condensation of Formaldehyde and Methyl Acetate to Methyl Acrylate. Industrial & Engineering Chemistry Research, 2018, 57, 93-100.	3.7	27
260	Lower Limit of Interfacial Thermal Resistance across the Interface between an Imidazolium Ionic Liquid and Solid Surface. Journal of Physical Chemistry C, 2018, 122, 22194-22200.	3.1	27
261	Synthesis of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids. Green Chemistry, 2020, 22, 2488-2497.	9.0	27
262	Cost-Effective Synthesis of High Molecular Weight Biobased Polycarbonate via Melt Polymerization of Isosorbide and Dimethyl Carbonate. ACS Sustainable Chemistry and Engineering, 2020, 8, 9968-9979.	6.7	27
263	Ionophobic nanopores enhancing the capacitance and charging dynamics in supercapacitors with ionic liquids. Journal of Materials Chemistry A, 2021, 9, 15985-15992.	10.3	27
264	Development of an Ionic Porphyrin-Based Platform as a Biomimetic Light-Harvesting Agent for High-Performance Photoenzymatic Synthesis of Methanol from CO ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 11503-11511.	6.7	27
265	Epitaxial Regeneration of Spent Graphite Anode Material by an Eco-friendly In-Depth Purification Route. ACS Sustainable Chemistry and Engineering, 2021, 9, 16192-16202.	6.7	27
266	Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure and Applied Chemistry, 2012, 84, 745-754.	1.9	26
267	Deep hydrodenitrification of pyridine by solid catalyst coupling with ionic liquids under mild conditions. Green Chemistry, 2017, 19, 1692-1700.	9.0	26
268	Thiourea-Based Bifunctional Ionic Liquids as Highly Efficient Catalysts for the Cycloaddition of CO2 to Epoxides. Catalysis Letters, 2017, 147, 1654-1664.	2.6	26
269	Structure and interaction properties of MBIL [Bmim] [FeCl4] and methanol: A combined FTIR and simulation study. Journal of Molecular Liquids, 2020, 309, 113061.	4.9	26
270	Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS ₂ /C interoverlapped superstructure with robust charge transfer networks. Journal of Materials Chemistry A, 2020, 8, 15002-15011.	10.3	26

#	Article	IF	Citations
271	Preparation of Core/Shell Electrically Conductive Fibers by Efficient Coating Carbon Nanotubes on Polyester. Advanced Fiber Materials, 2021, 3, 180-191.	16.1	26
272	A novel ionic liquids-based scrubbing process for efficient CO2 capture. Science China Chemistry, 2010, 53, 1549-1553.	8.2	25
273	Synthesis, characterization and catalytic performance of SAPOâ€34 molecular sieves for methanolâ€toâ€olefin (MTO) reaction. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 596-605.	1.5	25
274	Deep Desulfurization of Gasoline Fuel using FeCl ₃ -Containing Lewis-Acidic Ionic Liquids. Separation Science and Technology, 2014, 49, 1208-1214.	2.5	25
275	Lanthanum and Cesium-Loaded SBA-15 Catalysts for MMA Synthesis by Aldol Condensation of Methyl Propionate and Formaldehyde. Catalysis Letters, 2016, 146, 1808-1818.	2.6	25
276	Structures and hydrogen bonds of biodegradable naphthenate ionic liquids. Fluid Phase Equilibria, 2013, 360, 169-179.	2.5	24
277	Ultrathin BiOBr nanocrystals with dominant {001} facets and their high photocatalytic activity. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	24
278	lonic liquids and supercritical carbon dioxide: green and alternative reaction media for chemical processes. Reviews in Chemical Engineering, 2016, 32, 587-609.	4.4	24
279	Angstrom science: Exploring aggregates from a new viewpoint. Green Energy and Environment, 2016, 1, 75-78.	8.7	24
280	One-step preparation of an antibacterial chitin/Zn composite from shrimp shells using urea-Zn(OAc) ₂ ·2H ₂ O aqueous solution. Green Chemistry, 2018, 20, 2212-2217.	9.0	24
281	Theoretical Elucidation of \hat{l}^2 -O-4 Bond Cleavage of Lignin Model Compound Promoted by Sulfonic Acid-Functionalized Ionic Liquid. Frontiers in Chemistry, 2019, 7, 78.	3.6	24
282	Efficient synthesis of isosorbide-based polycarbonate with scalable dicationic ionic liquid catalysts by balancing the reactivity of the <i>endo</i> oCH and <i>exo</i> OH. Green Chemistry, 2021, 23, 973-982.	9.0	24
283	Lithium slurry flow cell, a promising device for the future energy storage. Green Energy and Environment, 2021, 6, 5-8.	8.7	24
284	Advanced Nonflammable Localized Highâ€Concentration Electrolyte For High Energy Density Lithium Battery. Energy and Environmental Materials, 2022, 5, 1294-1302.	12.8	24
285	Synergistic Effect of TMSPi and FEC in Regulating the Electrode/Electrolyte Interfaces in Nickel-Rich Lithium Metal Batteries. ACS Applied Materials & Description (2018) 11517-11527.	8.0	24
286	Molecular simulation of imidazolium amino acid-based ionic liquids. Molecular Simulation, 2010, 36, 1123-1130.	2.0	23
287	Simultaneous desulfurization and denitrogen of liquid fuels using two functionalized group ionic liquids. Science China Chemistry, 2014, 57, 1766-1773.	8.2	23
288	Promoting effects of MgO, (NH ₄) ₂ SO ₄ or MoO ₃ modification in oxidative esterification of methacrolein over Au/Ce _{0.6} Zr _{0.4} O ₂ -based catalysts. Catalysis Science and Technology, 2016, 6, 5453-5463.	4.1	23

#	Article	lF	Citations
289	Insight into the Performance of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Description of Acid Gas in Ionic Liquids by Molecular Simulation of Acid G	3.7	23
290	NH3 separation membranes with self-assembled gas highways induced by protic ionic liquids. Chemical Engineering Journal, 2021, 421, 127876.	12.7	23
291	Vertically Heterostructured Solid Electrolytes for Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	23
292	Catalytic hydrorefining of tar to liquid fuel over multi-metals (W-Mo-Ni) catalysts. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	22
293	Absorption degree analysis on biogas separation with ionic liquid systems. Bioresource Technology, 2015, 175, 135-141.	9.6	22
294	In Situ Self-Assembly-Generated 3D Hierarchical Co ₃ O ₄ Micro/Nanomaterial Series: Selective Synthesis, Morphological Control, and Energy Applications. ACS Applied Materials & ACS ACS Applied & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS	8.0	22
295	Amino functionalized [B ₁₂ H ₁₂] ^{2â^'} salts as hypergolic fuels. New Journal of Chemistry, 2018, 42, 3568-3573.	2.8	22
296	Synthesis of vanadium phosphorus oxide catalysts promoted by iron-based ionic liquids and their catalytic performance in selective oxidation of $i>n$ -butane. Catalysis Science and Technology, 2018, 8, 4515-4525.	4.1	22
297	Height-driven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study. Physical Chemistry Chemical Physics, 2019, 21, 12767-12776.	2.8	22
298	Mesoscale structures and mechanisms in ionic liquids. Particuology, 2020, 48, 55-64.	3.6	22
299	A new strategy for enhancing the room temperature conductivity of solid-state electrolyte by using a polymeric ionic liquid. Ionics, 2020, 26, 4803-4812.	2.4	22
300	One-pot synthesis of bio-based polycarbonates from dimethyl carbonate and isosorbide under metal-free condition. Green Chemistry, 2020, 22, 4550-4560.	9.0	22
301	High performance thick cathodes enabled by gradient porosity. Electrochimica Acta, 2021, 377, 138105.	5.2	22
302	Constructing single Cu–N ₃ sites for CO ₂ electrochemical reduction over a wide potential range. Green Chemistry, 2021, 23, 5461-5466.	9.0	22
303	Phase Behavior of (1-Alkyl-3-methyl Imidazolium Tetrafluoroborate +) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 278-282.	50 187 Td 1.9	l (6-(Hydrox) 21
304	A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO4 battery. lonics, 2015, 21, 2109-2117.	2.4	21
305	Effects of water content on the dissolution behavior of wool keratin using 1-ethyl-3-methylimidazolium dimethylphosphate. Science China Chemistry, 2017, 60, 934-941.	8.2	21
306	A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC Advances, 2018, 8, 13034-13039.	3.6	21

#	Article	IF	Citations
307	Synthesis of Polyionic Liquid by Phenolic Condensation and Its Application in Esterification. ACS Sustainable Chemistry and Engineering, 2019, 7, 17220-17226.	6.7	21
308	Theoretical Study of Ionic Liquid Clusters Catalytic Effect on the Fixation of CO ₂ . Industrial & Study of Ionic Liquid Clusters Catalytic Effect on the Fixation of CO ₂ . Industrial & Study of Ionic Liquid Clusters Catalytic Effect on the Fixation of CO ₂ .	3.7	21
309	Multi-scale promoting effects of lead for palladium catalyzed aerobic oxidative coupling of methylacrolein with methanol. Catalysis Science and Technology, 2015, 5, 2076-2080.	4.1	20
310	Electrodeposition of crystalline silicon directly from silicon tetrachloride in ionic liquid at low temperature. RSC Advances, 2016, 6, 12061-12067.	3.6	20
311	Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4ÂV quasi-solid-state nanohybrid supercapacitors. Electrochimica Acta, 2017, 258, 343-352.	5.2	20
312	Study on ionic liquid/cellulose/coagulator phase diagram and its application in green spinning process. Journal of Molecular Liquids, 2019, 289, 111127.	4.9	20
313	Novel continuous process for methacrolein production in numerous droplet reactors. AICHE Journal, 2020, 66, e16239.	3.6	20
314	Technoeconomic Analysis and Process Design for CO ₂ Electroreduction to CO in Ionic Liquid Electrolyte. ACS Sustainable Chemistry and Engineering, 2021, 9, 9045-9052.	6.7	20
315	Enhanced high-temperature performance and thermal stability of lithium-rich cathode via combining full concentration gradient design with surface spinel modification. Chemical Engineering Journal, 2021, 415, 129042.	12.7	20
316	Electrodeposition of Al from chloroaluminate ionic liquids with different cations. Ionics, 2017, 23, 2449-2455.	2.4	19
317	Highly Selective Oxygen/Nitrogen Separation Membrane Engineered Using a Porphyrin-Based Oxygen Carrier. Membranes, 2019, 9, 115.	3.0	19
318	Combining Ionic Liquids and Sodium Salts into Metalâ€Organic Framework for Highâ€Performance Ionic Conduction. ChemElectroChem, 2020, 7, 183-190.	3.4	19
319	Thermodynamics at microscales: 3D→2D, 1D and 0D. Green Energy and Environment, 2020, 5, 251-258.	8.7	19
320	Insight into the formation and permeability of ionic liquid unilamellar vesicles by molecular dynamics simulation. Soft Matter, 2020, 16, 2605-2610.	2.7	19
321	Extraction of Asphaltenes from Direct Coal Liquefaction Residue by Dialkylphosphate Ionic Liquids. Separation Science and Technology, 2012, 47, 386-391.	2.5	18
322	Modified extra-large mesoporous silica supported Au–Ni as a highly efficient catalyst for oxidative coupling of aldehydes with methanol. RSC Advances, 2014, 4, 58769-58772.	3.6	18
323	Synergistic Effects of Cosolvents on the Dissolution of Wool Keratin Using Ionic Liquids. Chemical Engineering and Technology, 2016, 39, 979-986.	1.5	18
324	Bicyclic ammonium ionic liquids as dense hypergolic fuels. RSC Advances, 2017, 7, 21592-21599.	3.6	18

#	Article	IF	CITATIONS
325	Kinetic Evaluation of Hydrodesulfurization and Hydrodenitrogenation Reactions via a Lumped Model. Energy & Ener	5.1	18
326	Nanoscale Observation of Microfibril Swelling and Dissolution in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 909-917.	6.7	18
327	Low Temperature Electrochemical Deposition of Aluminum in Organic Bases/Thiourea-Based Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 15480-15486.	6.7	18
328	Separation Efficiency of CO ₂ in Ionic Liquids/Poly(vinylidene fluoride) Composite Membrane: A Molecular Dynamics Study. Industrial & Dynamics Study. I	3.7	18
329	Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors <i>via</i> the Efficient Coupling between TiNb ₂ O ₇ /Holey-rGO Nanoarchitectures and Ionic Liquid-Based Electrolytes. ACS Applied Materials & Description (1988) (198	8.0	18
330	Artificial photosynthesis for solar hydrogen generation over transition-metal substituted Keggin-type titanium tungstate. New Journal of Chemistry, 2014, 38, 1315-1320.	2.8	17
331	Immobilization and molecular rearrangement of ionic liquids on the surface of carbon nanotubes. RSC Advances, 2014, 4, 16267-16273.	3.6	17
332	Highly efficient carbon dioxide capture by a novel amine solvent containing multiple amino groups. Journal of Chemical Technology and Biotechnology, 2015, 90, 1918-1926.	3.2	17
333	Relationship of basicity and hydrogen bond properties of ionic liquids with its catalytic performance: Application to synthesis of propylene glycol methyl ether. Catalysis Communications, 2017, 96, 69-73.	3.3	17
334	One-Step Synthesis of Methyl Acrylate Using Methyl Acetate with Formaldehyde in a Fluidized Bed Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 9322-9330.	3.7	17
335	Solid–Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes. ACS Applied Materials & Dendrite & Accordance & Ac	8.0	17
336	[Bis(imidazolyl)–BH ₂] ⁺ [Bis(triazolyl)–BH ₂] ^{â^'} lonic Liquids with High Density and Energy Capacity. Chemistry - an Asian Journal, 2018, 13, 1932-1940.	3.3	17
337	Unraveling the cation and anion effects and kinetics for ionic liquid catalyzed direct synthesis of methyl acrylate under mild conditions. Green Chemistry, 2020, 22, 7913-7923.	9.0	17
338	Dehydrative Formation of Isosorbide from Sorbitol over Poly(ionic liquid)–Covalent Organic Framework Hybrids. ACS Applied Materials & Losson Samp; Interfaces, 2021, 13, 552-562.	8.0	17
339	Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts. Frontiers of Chemical Science and Engineering, 2011, 5, 79-88.	4.4	16
340	Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid. Frontiers of Chemical Science and Engineering, 2016, 10, 139-146.	4.4	16
341	Amide-Functionalized Ionic Liquids As Curing Agents for Epoxy Resin: Preparation, Characterization, and Curing Behaviors with TDE-85. Industrial & Engineering Chemistry Research, 2019, 58, 14088-14097.	3.7	16
342	Stimuliâ€Responsive Ionic Liquids and the Regulation of Aggregation Structure and Phase Behaviorâ€. Chinese Journal of Chemistry, 2021, 39, 729-744.	4.9	16

#	Article	IF	CITATIONS
343	Synthesis of bio-based polycarbonate <i>via</i> one-step melt polycondensation of isosorbide and dimethyl carbonate by dual site-functionalized ionic liquid catalysts. Green Chemistry, 2021, 23, 447-456.	9.0	16
344	Multiple Hydrogen Bonds Promote the Nonmetallic Degradation Process of Polyethylene Terephthalate with an Amino Acid Ionic Liquid Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 4180-4188.	3.7	16
345	Understanding Structural and Transport Properties of Dissolved Li ₂ S ₈ in Ionic Liquid Electrolytes through Molecular Dynamics Simulations. ChemPhysChem, 2021, 22, 419-429.	2.1	16
346	Topological engineering of two-dimensional ionic liquid islands for high structural stability and CO ₂ adsorption selectivity. Chemical Science, 2021, 12, 15503-15510.	7.4	16
347	Vaporization enthalpy and cluster species in gas phase of 1,1,3,3â€ŧetramethylguanidiniumâ€based ionic liquids from computer simulations. AICHE Journal, 2011, 57, 507-516.	3.6	15
348	Assembling of graphene oxide in an isolated dissolving droplet. Soft Matter, 2012, 8, 11249.	2.7	15
349	Heterocyclic Energetic Salts of 4,4′,5,5′-Tetranitro-2,2′-Biimidazole. Journal of Energetic Materials, 2015, 33, 202-214.	2.0	15
350	Superbase/saccharide: An ecologically benign catalyst for efficient fixation of CO ₂ into cyclic carbonates. Synthetic Communications, 2016, 46, 497-508.	2.1	15
351	An ionic liquid catalyzed probase method for one-pot synthesis of $\hat{l}\pm,\hat{l}^2$ -unsaturated esters from esters and aldehydes under mild conditions. Green Chemistry, 2017, 19, 4838-4848.	9.0	15
352	Direct conversion of cellulose to sorbitol via an enhanced pretreatment with ionic liquids. Journal of Chemical Technology and Biotechnology, 2018, 93, 2617-2624.	3.2	15
353	Amino acids/superbases as eco-friendly catalyst system for the synthesis of cyclic carbonates under metal-free and halide-free conditions. Synthetic Communications, 2018, 48, 876-886.	2.1	15
354	Neuron-Mimic Smart Electrode: A Two-Dimensional Multiscale Synergistic Strategy for Densely Packed and High-Rate Lithium Storage. ACS Nano, 2019, 13, 9148-9160.	14.6	15
355	Improvement of product distribution through enhanced mass transfer in isobutane/butene alkylation. Chemical Engineering Research and Design, 2019, 143, 190-200.	5.6	15
356	Isobutane/2-Butene Alkylation Reaction Catalyzed by Cu-Modified and Rare Earth X-Type Zeolite. Industrial & Engineering Chemistry Research, 2019, 58, 9690-9700.	3.7	15
357	Selective Oxidation of Amino Alcohols to Amino Acids over Au Supported on Monoclinic ZrO ₂ : Dominant Active Sites and Kinetic Study. Industrial & Engineering Chemistry Research, 2019, 58, 8506-8516.	3.7	15
358	A space-confined strategy toward large-area two-dimensional crystals of ionic liquid. Physical Chemistry Chemical Physics, 2020, 22, 1820-1825.	2.8	15
359	Abnormal Enhanced Free Ions of Ionic Liquids Confined in Carbon Nanochannels. Journal of Physical Chemistry Letters, 2021, 12, 6078-6084.	4.6	15
360	Metal-free and mild photo-thermal synergism in ionic liquids for lignin C _α –C _β bond cleavage to provide aldehydes. Green Chemistry, 2021, 23, 5524-5534.	9.0	15

#	Article	IF	CITATIONS
361	Ionic liquids as a tunable solvent and modifier for biocatalysis. Catalysis Reviews - Science and Engineering, 0, , 1-47.	12.9	15
362	Preparation of 1,4-cyclohexanedimethanol by selective hydrogenation of a waste PET monomer bis (2-hydroxyethylene terephthalate). RSC Advances, 2015, 5, 485-492.	3.6	14
363	Spherical Pâ€modified catalysts for heterogeneous crossâ€aldol condensation of formaldehyde with methyl acetate for methyl acrylate production. Canadian Journal of Chemical Engineering, 2017, 95, 2104-2111.	1.7	14
364	Production of Bioâ€Based Gasoline by Nobleâ€Metalâ€Catalyzed Hydrodeoxygenation of αâ€Angelica Lactone Derived Di/Trimers. ChemistrySelect, 2017, 2, 4219-4225.	1.5	14
365	Protic Quaternary Ammonium Ionic Liquids for Catalytic Conversion of CO ₂ into Cyclic Carbonates: A Combined Ab Initio and MD Study. Industrial & Description of CO ₂ , 2018, 57, 7121-7129.	3.7	14
366	A lithium salt additive Li2ZrF6 for enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 cathode. lonics, 2018, 24, 2965-2972.	2.4	14
367	Facile Synthesis of Cellulose/ZnO Aerogel with Uniform and Tunable Nanoparticles Based on Ionic Liquid and Polyhydric Alcohol. ACS Sustainable Chemistry and Engineering, 2018, 6, 16248-16254.	6.7	14
368	A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor. lonics, 2019, 25, 241-251.	2.4	14
369	Theoretical Insights Into the Depolymerization Mechanism of Lignin to Methyl p-hydroxycinnamate by [Bmim] [FeCl4] Ionic Liquid. Frontiers in Chemistry, 2019, 7, 446.	3.6	14
370	Physicochemical Properties of Various 2-Hydroxyethylammonium Sulfonate -Based Protic Ionic Liquids and Their Potential Application in Hydrodeoxygenation. Frontiers in Chemistry, 2019, 7, 196.	3.6	14
371	Effect of Clusters on [Li] Solvation and Transport in Mixed Organic Compound/Ionic Liquid Electrolytes under External Electric Fields. Industrial & Engineering Chemistry Research, 2020, 59, 11308-11316.	3.7	14
372	Phosphorus-Based Ionic Liquid as Dual Function Promoter Oriented Synthesis of Efficient VPO Catalyst for Selective Oxidation of n-butane. Catalysis Letters, 2021, 151, 255-266.	2.6	14
373	Computational studies of the structure and cation-anion interactions in 1-ethyl-3-methylimidazolium lactate ionic liquid. Science China Chemistry, 2012, 55, 1548-1556.	8.2	13
374	Experimental Discovery of Magnetoresistance and Its Memory Effect in Methylimidazolium-Type Iron-Containing Ionic Liquids. Chemistry of Materials, 2016, 28, 8710-8714.	6.7	13
375	Conversion of bis(2-hydroxyethylene terephthalate) into 1,4-cyclohexanedimethanol by selective hydrogenation using RuPtSn/Al ₂ O ₃ . RSC Advances, 2016, 6, 48737-48744.	3.6	13
376	Ternary nanoarray electrode with corn-inspired hierarchical design for synergistic lithium storage. Nano Research, 2017, 10, 172-186.	10.4	13
377	Effects of the Water Content on the Transport Properties of Ionic Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 19661-19669.	3.7	13
378	lonozyme: ionic liquids as solvent and stabilizer for efficient bioactivation of CO ₂ . Green Chemistry, 2021, 23, 6990-7000.	9.0	13

#	Article	IF	CITATIONS
379	Ionic liquid additive stabilized cathode/electrolyte interface in LiCoO2 based solid-state lithium metal batteries. Electrochimica Acta, 2021, 368, 137593.	5.2	13
380	Developing and Regenerating Cofactors for Sustainable Enzymatic CO2 Conversion. Processes, 2022, 10, 230.	2.8	13
381	Tuning the Hydrophilicity and Hydrophobicity of the Respective Cation and Anion: Reversible Phase Transfer of Ionic Liquids. Angewandte Chemie, 2016, 128, 8066-8070.	2.0	12
382	Carbon-Based Materials Enhanced Emulsification To Improve Product Distribution in Isobutane/Butene Alkylation Catalyzed by Sulfuric Acid. Industrial & Engineering Chemistry Research, 2017, 56, 7700-7707.	3.7	12
383	First-principles study on screening doped TiO2(B) as an anode material with high conductivity and low lithium transport resistance for lithium-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 17985-17992.	2.8	12
384	High Aluminum Content Beta Zeolite as an Active Lewis Acid Catalyst for Î ³ -Valerolactone Decarboxylation. Industrial & Engineering Chemistry Research, 2019, 58, 11841-11848.	3.7	12
385	An ultra-stable lithium plating process enabled by the nanoscale interphase of a macromolecular additive. Journal of Materials Chemistry A, 2020, 8, 23844-23850.	10.3	12
386	Dynamic Process Simulation and Assessment of CO ₂ Removal from Confined Spaces Using Pressure Swing Adsorption. Industrial & Engineering Chemistry Research, 2020, 59, 16407-16419.	3.7	12
387	Catalytic synthesis of methacrolein <i>via</i> the condensation of formaldehyde and propionaldehyde with <scp>l</scp> -proline. Green Chemistry, 2020, 22, 4222-4230.	9.0	12
388	Molecular thermodynamic understanding of transport behavior of <scp>CO₂</scp> at the ionic liquidsâ€electrode interface. AICHE Journal, 2021, 67, e17060.	3.6	12
389	Ruthenium complex immobilized on supported ionic-liquid-phase (SILP) for alkoxycarbonylation of olefins with CO ₂ . Green Chemistry, 2021, 23, 3073-3080.	9.0	12
390	LiNO3 and TMP enabled high voltage room-temperature solid-state lithium metal battery. Chemical Engineering Journal, 2022, 448, 137743.	12.7	12
391	Highâ€Performance Rechargeable Aluminumâ€Ion Batteries Enabled by Composite FeF ₃ @ Expanded Graphite Cathode and Carbon Nanotubeâ€Modified Separator. Advanced Energy Materials, 2022, 12, .	19.5	12
392	All-atom and united-atom simulations of guanidinium-based ionic liquids. Science China Chemistry, 2012, 55, 1573-1579.	8.2	11
393	Synthesis and Characterization of Tetramethylethylenediamine-Based Hypergolic Ionic Liquids. Journal of Energetic Materials, 2016, 34, 138-151.	2.0	11
394	Synthesis, Crystal Structure, and Properties of Energetic Copper(II) Complex based on 3,5-Dinitrobenzoic Acid and 1,5-Diaminotetrazole. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 647-652.	1.2	11
395	lonic Liquids as Bifunctional Cosolvents Enhanced CO2 Conversion Catalysed by NADH-Dependent Formate Dehydrogenase. Catalysts, 2018, 8, 304.	3.5	11
396	IL-oxidizer/IL-fuel combinations as greener hypergols. New Journal of Chemistry, 2019, 43, 1127-1129.	2.8	11

#	Article	IF	Citations
397	Light-Controlled Nanoparticle Collision Experiments. Journal of Physical Chemistry Letters, 2020, 11, 2972-2976.	4.6	11
398	Rheological properties of cotton pulp cellulose dissolved in 1â€butylâ€3â€methylimidazolium chloride solutions. Polymer Engineering and Science, 2011, 51, 2381-2386.	3.1	10
399	Carbon-Number-Based Kinetics, Reactor Modeling, and Process Simulation for Coal Tar Hydrogenation. Energy & Dels, 2015, 29, 7532-7541.	5.1	10
400	Regulating sulfur removal efficiency of fuels by Lewis acidity of ionic liquids. Science China Chemistry, 2016, 59, 526-531.	8.2	10
401	Review of Methods for Sustainability Assessment of Chemical Engineering Processes. Industrial & Engineering Chemistry Research, 2021, 60, 52-66.	3.7	10
402	Excellent Trace Detection of Proteins on TiO ₂ Nanotube Substrates through Novel Topography Optimization. Journal of Physical Chemistry C, 2020, 124, 27790-27800.	3.1	10
403	Principles and strategies for green process engineering. Green Chemical Engineering, 2022, 3, 1-4.	6.3	10
404	Periodicity and map for discovery of new ionic liquids. Science in China Series B: Chemistry, 2006, 49, 103-115.	0.8	9
405	Effect of the addition of cornstalk to coal powder/coal tar combustion. Journal of Thermal Analysis and Calorimetry, 2012, 109, 817-823.	3.6	9
406	Numerical simulation of CO2-ionic liquid flow in a stirred tank. Science China Chemistry, 2015, 58, 1918-1928.	8.2	9
407	Special topic on ionic liquids: Energy, materials & environment. Science China Chemistry, 2016, 59, 505-506.	8.2	9
408	Stability, acidity and interaction properties of [Bmim] [SbF6] coupled with concentrated sulfuric acid. Science China Chemistry, 2017, 60, 1243-1249.	8.2	9
409	Preparation of cellulose/multi-walled carbon nanotube composite membranes with enhanced conductive property regulated by ionic liquids. Fibers and Polymers, 2017, 18, 1780-1789.	2.1	9
410	Reversible Phase Transfer of Carbon Dots between an Organic Phase and Aqueous Solution Triggered by CO ₂ . Angewandte Chemie, 2018, 130, 3749-3753.	2.0	9
411	Enhanced Catalytic Activity with Oxygen for Methyl Acrylate Production via Crossâ€Aldol Condensation Reaction. Chemical Engineering and Technology, 2018, 41, 1331-1341.	1.5	9
412	Functional Ionic Liquid Modified Core-Shell Structured Fibrous Gel Polymer Electrolyte for Safe and Efficient Fast Charging Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 421.	3.6	9
413	Chemical speciation and health risks of airborne heavy metals around an industrial community in Nigeria. Human and Ecological Risk Assessment (HERA), 2020, 26, 242-254.	3.4	9
414	Boosting the hole transport of conductive polymers by regulating the ion ratio in ionic liquid additives. Physical Chemistry Chemical Physics, 2020, 22, 9796-9807.	2.8	9

#	Article	IF	CITATIONS
415	Fast Catalytic Esterification Using a Hydrophobized Zrâ€MOF with Acidic Ionic Liquid Linkers. ChemistrySelect, 2020, 5, 1153-1156.	1.5	9
416	Efficient activation of dimethyl carbonate to synthesize bio-based polycarbonate by eco-friendly amino acid ionic liquid catalyst. Applied Catalysis A: General, 2021, 617, 118111.	4.3	9
417	Thermodynamical Origin of Nonmonotonic Inserting Behavior of Imidazole Ionic Liquids into the Lipid Bilayer. Journal of Physical Chemistry Letters, 2021, 12, 9926-9932.	4.6	9
418	Preparation and characterization of gel polymer electrolytes based on acrylonitrile–methoxy polyethylene glycol (350) monoacrylate–lithium acrylate terpolymers. Electrochimica Acta, 2008, 54, 606-610.	5.2	8
419	Enhanced delignification of cornstalk by employing superbase TBD in ionic liquids. RSC Advances, 2014, 4, 27430-27438.	3.6	8
420	Ni-enhanced Co3O4 nanoarrays grown in situ on a Cu substrate as integrated anode materials for high-performance Li-ion batteries. RSC Advances, 2015, 5, 7388-7394.	3.6	8
421	Insight into the activity of efficient acid–base bifunctional catalysts for the coupling reaction of CO ₂ . Molecular Physics, 2015, 113, 3524-3530.	1.7	8
422	Novel ionic liquid based electrolyte for double layer capacitors with enhanced high potential stability. Science China Chemistry, 2016, 59, 547-550.	8.2	8
423	Effects of lithium bis(oxalato)borate on electrochemical stability of [Emim] [Al2Cl7] ionic liquid for aluminum electrolysis. Ionics, 2017, 23, 959-966.	2.4	8
424	Effect of Ion Cluster on Concentration of Long-Alkyl-Chain Ionic Liquids Aqueous Solution by Nanofiltration. Industrial & Engineering Chemistry Research, 2018, 57, 7633-7642.	3.7	8
425	Highly Efficient and Selective Synthesis of Methyl Carbonate-Ended Polycarbonate Precursors from Dimethyl Carbonate and Bisphenol A. Industrial & Engineering Chemistry Research, 2020, 59, 13948-13955.	3.7	8
426	Effect of Framework Si/Al Ratios on the Catalytic Performance of Isobutane Alkylation over LaFAU Zeolites. Energy & Energy & 2020, 34, 9426-9435.	5.1	8
427	Ionic liquid decoration for the hole transport improvement of PEDOT. Materials Advances, 2021, 2, 2009-2020.	5.4	8
428	Two fluid model using kinetic theory for modeling of oneâ€step hydrogen production gasifier. AICHE Journal, 2008, 54, 2833-2851.	3.6	7
429	Extraction of coal-tar pitch using NMP/ILs mixed solvents. Science China Chemistry, 2014, 57, 1760-1765.	8.2	7
430	Carbonyl ruthenium catalysts for the low-temperature water–gas shift reaction with ionic liquids as support structure controllers. Green Chemistry, 2016, 18, 4704-4713.	9.0	7
431	New series of soft materials based on ionic liquid–metal complexes for high-efficient electrolytes of dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 14630-14638.	10.3	7
432	Azetidiniumâ€based Hypergolic Ionic Liquids with High Strain Energy. ChemistrySelect, 2018, 3, 284-288.	1.5	7

#	Article	IF	CITATIONS
433	Cobalt-Catalyzed Chemoselective Transfer Hydrogenative Cyclization Cascade of Enone-Tethered Aldehydes. Organic Letters, 2021, 23, 3873-3878.	4.6	7
434	Hydrodynamics numerical simulation of a vertical falling film evaporator for ionic liquid systems. Chemical Engineering Science, 2021, 237, 116563.	3.8	7
435	Pd-promoted heteropolyacid on mesoporous zirconia as a stable and bifunctional catalyst for oxidation of thiophenes. Fuel, 2022, 310, 122462.	6.4	7
436	Acylamido-based anion-functionalized ionic liquids for efficient synthesis of poly(isosorbide) Tj ETQq0 0 0 rgBT /	Overlock 1 4.1	.0 Tf 50 622 1
437	Infinite Dilution Activity Coefficients in Ethylene Glycol and Ethylene Carbonate. Journal of Chemical & Engineering Data, 2003, 48, 167-170.	1.9	6
438	Dispersion of modified carbon nanotubes in 1-butyl-3-methyl imidazolium tetrafluoroborate. Journal of Materials Science, 2006, 41, 3123-3126.	3.7	6
439	An effective twoâ€step ionic liquids method for cornstalk pretreatment. Journal of Chemical Technology and Biotechnology, 2015, 90, 2057-2065.	3.2	6
440	Dissolution of Sessile Microdroplets of Electrolyte and Graphene Oxide Solutions in an Ouzo System. Langmuir, 2016, 32, 10296-10304.	3.5	6
441	Practices for modeling oil shale pyrolysis and kinetics. Reviews in Chemical Engineering, 2017, 34, 21-42.	4.4	6
442	Ionic Liquid–Based Membranes for CO2 Separation. , 2018, , 235-260.		6
443	Preparation of the Catalytic Chitin/Zn Composite by Combined Ionic Liquid–Inorganic Salt Aqueous Solution from Shrimp Shells. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6
444	2D Meso/Microporous Platelet Carbon Derived from Metalâ€Organic frameworks and Its Application in Highâ€Performance Liâ€S Batteries. ChemElectroChem, 2019, 6, 3091-3100.	3.4	6
445	Strategy Combining Free Volume Theory and Fragment Contribution Corresponding State Method for Predicting Viscosities of Ionic Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 5640-5649.	3.7	6
446	Density, Viscosity, and Conductivity of [VAIM] [TFSI] in Mixtures for Lithium-Ion Battery Electrolytes. Journal of Chemical & Description (2014) Journal of Chem	1.9	6
447	Kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. Chemical Engineering Journal, 2021, 421, 127832.	12.7	6
448	Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	6
449	Elucidating the Zeolite Particle Size Effect on Butene/Isobutane Alkylation. Industrial & Engineering Chemistry Research, 2022, 61, 1032-1043.	3.7	6
450	Effects of LiClO ₄ on the Characteristics and Ionic Conductivity of the Solid Polymer Electrolytes Composed of PEO, LiClO ₄ and PLiAA. Materials Science Forum, 2013, 743-744, 53-58.	0.3	5

#	Article	IF	Citations
451	Size effects of alkylimidazolium cations on the interfacial properties and CO ₂ uptake capacity in layered organic–inorganic imidazolium–TiO ₂ hybrids. RSC Advances, 2016, 6, 23102-23109.	3.6	5
452	Electrolytic solvent effects on the gassing behavior in LCO LTO batteries. Electrochimica Acta, 2018, 274, 170-176.	5.2	5
453	Sterically controlling 2-carboxylated imidazolium salts for one-step efficient hydration of epoxides into 1,2-diols. Green Chemistry, 2021, 23, 2992-3000.	9.0	5
454	Ionic Liquids Achieve the Exfoliation of Ultrathin Two-Dimensional VOPO ₄ ·2H ₂ O Crystalline Nanosheets: Implications on Energy Storage and Catalysis. ACS Applied Nano Materials, 2021, 4, 2503-2514.	5.0	5
455	Investigating the property and strength of intermolecular interaction in saturated and unsaturated cyclic cations constructed ionic liquids. Journal of Molecular Liquids, 2021, 335, 116253.	4.9	5
456	In Situ Electron Transport Layers by a Carboxyl Ionic Liquid-Assisted Microwave Technique for a 20.1% Perovskite Solar Cell. ACS Applied Energy Materials, 0, , .	5.1	5
457	Cobalt-doped hierarchical porous carbon materials with spherical chrysanthemum-like structures that are derived from the PVP-assisted synthesis of metal organic frameworks for advanced Li-S batteries. Journal of Alloys and Compounds, 2022, 918, 165741.	5.5	5
458	A self-assembled Si/SWNT 3D-composite-nanonetwork as a high-performance lithium ion battery anode. RSC Advances, 2015, 5, 97289-97294.	3.6	4
459	Computational Identification of a New Adsorption Site of CO ₂ on the Ag (211) Surface. ChemistrySelect, 2020, 5, 11503-11509.	1.5	4
460	lonische Fl $\tilde{A}^{1/4}$ ssigkeiten und stark eutektische L \tilde{A} ¶sungsmittel in der anorganischen Synthese. Angewandte Chemie, 2021, 133, 22320-22338.	2.0	4
461	Tracking the Microâ€Heterogeneity and Hydrogenâ€Bonding Interactions in Hydroxylâ€Functionalized Ionic Liquid Solutions: A Combined Experimental and Computational Study. ChemPhysChem, 2021, 22, 1891-1899.	2.1	4
462	Natural Deep Eutectic Solvents Enhanced Electro-Enzymatic Conversion of CO2 to Methanol. Frontiers in Chemistry, 2022, 10 , .	3.6	4
463	A double-layered Ge/carbon cloth integrated anode for high performance lithium ion batteries. RSC Advances, 2016, 6, 63414-63417.	3.6	3
464	Study on the Wall Lubrication Force for Water–Air in Multi-Scale Bubble Columns and Experimental Validation. Journal of Chemical Engineering of Japan, 2016, 49, 408-416.	0.6	3
465	Process Analysis for the Production of Hydrogen and Liquid Fuels from Oil Shale. Energy Technology, 2017, 5, 1963-1978.	3.8	3
466	Green chemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 995-1077.	4.4	3
467	Fabrication of Ionic Liquid-Based Pickering Emulsion and Its Enhancement for Tri-isobutene Formation in Isobutene Oligomerization. Industrial & Engineering Chemistry Research, 2020, 59, 10436-10446.	3.7	3
468	<scp>Exâ€situ</scp> catalytic fast pyrolysis of <scp>lowâ€rank</scp> coal over <scp>HZSM</scp> â€5 and modified Mg/ <scp>HZSM</scp> â€5 catalysts. International Journal of Energy Research, 2022, 46, 891-899.	4.5	3

#	Article	IF	CITATIONS
469	Highly Sensitive Flexible Pressure Sensors Enabled by Mixing of Silicone Elastomer With Ionic Liquid-Grafted Silicone Oil. Frontiers in Robotics and Al, 2021, 8, 737500.	3.2	3
470	Preparation and Performance of Novel Acrylonitrile (AN)-based Copolymer Gel Electrolytes for Lithium Ion Batteries. ECS Transactions, 2009, 16, 115-122.	0.5	2
471	Solvothermal synthesis of mesoporous magnetite nanoparticles for $Cr(IV)$ ions uptake and microwave absorption. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	2
472	Double-Confined Sulfur Inside Compressed Nickel Foam and Pencil-Plating Graphite for Lithium–Sulfur Battery. Industrial & Engineering Chemistry Research, 2018, 57, 4880-4886.	3.7	2
473	In Situ Tracking of Organic Reactions at the Vapor/Liquid Interfaces of Ionic Liquids. ChemPhysChem, 2018, 19, 2741-2750.	2.1	2
474	Ionic Liquids: Molecular Insights into the Regulatable Interfacial Property and Flow Behavior of Confined Ionic Liquids in Graphene Nanochannels (Small 29/2019). Small, 2019, 15, 1970156.	10.0	2
475	A paradigm for the efficient synthesis of bio-based polycarbonate with deep eutectic solvents as catalysts by inhibiting the degradation of molecular chains. Green Chemistry, 2021, 23, 4134-4143.	9.0	2
476	H-Bond Network-Regulated Binder for Si/Graphite Anodes. Industrial & Engineering Chemistry Research, 2021, 60, 17399-17407.	3.7	2
477	Construction of stable SEI film on Si@C high-loading electrodes by dimethoxydimethylsilane electrolyte additives. Ionics, 2022, 28, 1625-1634.	2.4	2
478	Bifunctional additive phenyl vinyl sulfone for boosting cyclability of lithium metal batteries. Green Chemical Engineering, 2023, 4, 49-56.	6.3	2
479	Quantitative Control Factors of Double Salt Ionic Liquids Catalysis in the Coupling Reaction of Epoxied and Methanol. Industrial & Epoxied Epoxied and Methanol. Industrial & Epoxied Epox	3.7	1
480	Green Chemical Engineering Based on Ionic Liquids. , 2019, , 667-690.		1
481	SYNTHESIS OF AZEOTROPE SEPARATION BASED ON GREEN CHEMICAL PRINCIPLES., 2004, , .		1
482	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1
483	Enhanced Performance in Vapor O-Methylation of Hydroxybenzene Over a Noval Kind of Mesoporous Rare Earth Phosphate. Zeitschrift Fur Physikalische Chemie, 2010, 224, 857-864.	2.8	0
484	Preparation and Characterization of a Novel Gel Polymer Membrane Based on a Tetra-Copolymer. Advanced Materials Research, 2011, 396-398, 1755-1759.	0.3	0
485	A Highly Stable Li4Ti5O12 Suspension Anolyte for Lithium Ion Flow Batteries. Russian Journal of Physical Chemistry A, 2021, 95, S163-S170.	0.6	0
486	Ionic Liquid Based Electrolyte for Electrochemical Energy Storage Application. ECS Meeting Abstracts, 2014, , .	0.0	0

#	Article	IF	CITATIONS
487	Green Chemical Engineering Based on Ionic Liquids. , 2018, , 1-24.		0
488	Hybrid/Tandem Strategy for High-efficient Solar Cell Systems. , 0, , .		0
489	Electrodeposition of Aluminum in Ionic Liquids. , 2019, , .		0
490	Degradation of lignin in ionic liquids: a review. Scientia Sinica Chimica, 2020, 50, 259-270.	0.4	0