Elena Tomsik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3232978/publications.pdf

Version: 2024-02-01

55 2,808 23 53 papers citations h-index g-index

56 56 56 56 2663

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Preparation of Smart Surfaces Based on PNaSS@PEDOT Microspheres: Testing of E. coli Detection. Sensors, 2022, 22, 2784.	3.8	6
2	Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions. Biosensors, 2022, 12, 446.	4.7	6
3	Electrochemical deposition of highly hydrophobic perfluorinated polyaniline film for biosensor applications. RSC Advances, 2021, 11, 18852-18859.	3.6	9
4	Transport properties of durable PANI/PPO composite membrane with interpenetrating layer. Polymer Testing, 2021, 94, 107037.	4.8	6
5	Effect of Hydrogen Bonding on a Value of an Open Circuit Potential of Polyâ€(3,4â€ethylenedioxythiophene) as a Beneficial Mode for Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2103001.	14.9	6
6	Cross-linked polyelectrolyte microspheres: preparation and new insights into electro-surface properties. Soft Matter, 2021, 17, 2290-2301.	2.7	6
7	Synergy between the Assembly of Individual PEDOT Chains and Their Interaction with Light. Macromolecules, 2021, 54, 10321-10330.	4.8	4
8	Electrochemically active water repelling perfluorinated polyaniline films. Chemical Physics, 2020, 528, 110540.	1.9	0
9	Non-conducting polyaniline nanofibrils and their physico-chemical behavior. Vacuum, 2020, 171, 108955.	3.5	3
10	Method of Preparation of Soluble PEDOT: Selfâ€Polymerization of EDOT without Oxidant at Room Temperature. Macromolecular Chemistry and Physics, 2020, 221, 2000219.	2.2	15
11	Thermal and chemical activation methods applied to DFAFC anodes prepared by magnetron sputtering. International Journal of Hydrogen Energy, 2020, 45, 14133-14144.	7.1	4
12	Hydrogen Bonding as a Tool to Control Chain Structure of PEDOT: Electrochemical Synthesis in the Presence of Different Electrolytes. Macromolecules, 2020, 53, 2464-2473.	4.8	12
13	Tuning the photoluminescence and anisotropic structure of PEDOT. Journal of Materials Chemistry C, 2019, 7, 7013-7019.	5.5	13
14	Single-step preparation of mono-dispersed sulfur nanoparticles for detention of copper. Journal of Nanoparticle Research, $2019, 21, 1$.	1.9	8
15	Assembly and Interaction of Polyaniline Chains: Impact on Electro- and Physical–Chemical Behavior. Journal of Physical Chemistry C, 2018, 122, 8022-8030.	3.1	22
16	Phase Transitions of Polyaniline Induced by Electrochemical Treatment. Macromolecular Chemistry and Physics, 2018, 219, 1700627.	2.2	3
17	Pd-catalysts for DFAFC prepared by magnetron sputtering. Applied Surface Science, 2017, 419, 838-846.	6.1	14
18	Highâ€Rate Polyaniline/Carbonâ€Cloth Electrodes: Effect of Mass Loading on the Pseudocapacitive Performance. ChemElectroChem, 2017, 4, 2884-2890.	3.4	13

#	Article	IF	CITATIONS
19	Water in Ionic Liquids: Correlation between Anion Hydrophilicity and Nearâ€Infrared Fingerprints. ChemPhysChem, 2016, 17, 1586-1590.	2.1	7
20	How strong are strong poly(sulfonic acids)? An example of the poly(2-acrylamido-2-methyl-1-propanesulfonic acid). European Polymer Journal, 2016, 74, 130-135.	5.4	5
21	Hydrogen-bonding versus π–π stacking in the design of organic semiconductors: From dyes to oligomers. Progress in Polymer Science, 2015, 43, 33-47.	24.7	26
22	Bio-esters formation in transesterification and esterification reactions on carbon and silica supported organo-sulfonic acids-polyaniline solid catalysts. Fuel, 2014, 135, 130-145.	6.4	10
23	J-Like Liquid-Crystalline and Crystalline States of Polyaniline Revealed by Thin, Highly Crystalline, and Strongly Oriented Films. Journal of Physical Chemistry B, 2014, 118, 8901-8904.	2.6	9
24	Influence of ethanol on the chain-ordering of carbonised polyaniline. Chemical Papers, 2013, 67, .	2.2	15
25	Jâ€Like Supramolecular Assemblies of Polyaniline in Water. Macromolecular Chemistry and Physics, 2013, 214, 2739-2743.	2.2	13
26	Selfâ€Assembly of Aniline Oligomers. Chemistry - an Asian Journal, 2013, 8, 129-137.	3.3	43
27	Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect. Chemical Papers, 2013, 67, .	2.2	7
28	Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations. Chemical Papers, 2013, 67, .	2.2	30
29	Transesterification of triacetin and castor oil with methanol catalyzed by supported polyaniline-sulfate. A role of polymer morphology. Applied Catalysis A: General, 2013, 455, 92-106.	4.3	7
30	Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chemical Papers, 2013, 67, .	2.2	12
31	Transformation of Oligoaniline Microspheres to Platelike Nitrogen-Containing Carbon. Journal of Physical Chemistry C, 2013, 117, 2289-2299.	3.1	20
32	Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 2012, 97, 1405-1414.	5.8	42
33	In situ polymerized polyaniline films: The top and the bottom. Synthetic Metals, 2012, 162, 2401-2405.	3.9	15
34	Solid-state oxidation of aniline hydrochloride with various oxidants. Synthetic Metals, 2011, 161, 1353-1360.	3.9	29
35	Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing. Thin Solid Films, 2011, 519, 4123-4127.	1.8	54
36	Suspension polymerization of aniline hydrochloride in nonâ€aqueous media. Polymer International, 2011, 60, 794-797.	3.1	4

#	Article	IF	Citations
37	NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. Polymer International, 2011, 60, 1296-1302.	3.1	14
38	Polyaniline prepared in ethylene glycol or glycerol. Polymer, 2011, 52, 1900-1907.	3.8	31
39	The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 2010, 64, .	2.2	43
40	Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterification of triglycerides and esterification of fatty acids with methanol. Applied Catalysis A: General, 2010, 383, 169-181.	4.3	32
41	Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synthetic Metals, 2010, 160, 701-707.	3.9	38
42	Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polymer Composites, 2009, 30, 1378-1387.	4.6	67
43	The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 2009, 94, 929-938.	5.8	167
44	NMR Investigation of Aniline Oligomers Produced in the Early Stages of Oxidative Polymerization of Aniline. Journal of Physical Chemistry B, 2009, 113, 6666-6673.	2.6	47
45	The reaction of polyaniline with iodine. Polymer, 2008, 49, 180-185.	3.8	32
46	Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 2008, 320, 231-240.	2.3	47
47	Chemical Oxidative Polymerization of Aminodiphenylamines. Journal of Physical Chemistry B, 2008, 112, 6976-6987.	2.6	67
48	Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 2008, 158, 200-211.	3.9	84
49	Polymerization of aniline in ice. Synthetic Metals, 2008, 158, 927-933.	3.9	33
50	Oxidation of Aniline: Polyaniline Granules, Nanotubes, and Oligoaniline Microspheres. Macromolecules, 2008, 41, 3530-3536.	4.8	342
51	Evolution of Polyaniline Nanotubes:Â The Oxidation of Aniline in Water. Journal of Physical Chemistry B, 2006, 110, 9461-9468.	2.6	412
52	Polyaniline nanotubes: conditions of formation. Polymer International, 2006, 55, 31-39.	3.1	270
53	Multi-wall carbon nanotubes coated with polyaniline. Polymer, 2006, 47, 5715-5723.	3.8	286
54	The genesis of polyaniline nanotubes. Polymer, 2006, 47, 8253-8262.	3.8	295

#	Article	IF	CITATIONS
55	Application of Energy-Saturated Complex Perchlorates. AIP Conference Proceedings, 2006, , .	0.4	3