
Hirohito Yamazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3232964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrical unfolding of cytochrome <i>c</i> during translocation through a nanopore constriction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
2	Rosette Nanotube Porins as Ion Selective Transporters and Single-Molecule Sensors. Journal of the American Chemical Society, 2020, 142, 1680-1685.	13.7	19
3	Solid-state nanopore sensors. Nature Reviews Materials, 2020, 5, 931-951.	48.7	335
4	Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore. Analyst, The, 2019, 144, 5381-5388.	3.5	7
5	Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications. Nano Letters, 2019, 19, 7553-7562.	9.1	118
6	Differential Enzyme Flexibility Probed Using Solid-State Nanopores. ACS Nano, 2018, 12, 4494-4502.	14.6	83
7	Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. ACS Nano, 2018, 12, 12472-12481.	14.6	63
8	Nanopore-Based Measurements of Protein Size, Fluctuations, and Conformational Changes. ACS Nano, 2017, 11, 5706-5716.	14.6	219
9	Label-Free Single-Molecule Thermoscopy Using a Laser-Heated Nanopore. Nano Letters, 2017, 17, 7067-7074.	9.1	37
10	A 150 nm ultraviolet excitation volume on a porous silicon membrane for direct optical observation of DNA coil relaxation during capture into nanopores. Nano Futures, 2017, 1, 011001.	2.2	4
11	Optical observation of DNA motion during and immediately after nanopore translocation. Applied Physics Express, 2016, 9, 017001.	2.4	8
12	Salt dependence of DNA translocation dynamics through silicon nanopores detected by ultraviolet excitation. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	4
13	Optical observation of DNA translocation through Al2O3 sputtered silicon nanopores in porous membrane. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	4
14	Optical observation of DNA translocation dynamics through solid-state nanopores. , 2015, , .		0
15	Silicon Nanopore Detection of Single DNA Molecules by Ultraviolet Excitation. The Review of Laser Engineering, 2015, 43, 689.	0.0	0
16	Optical detection of DNA translocation through silicon nanopore by ultraviolet light. Applied Physics A: Materials Science and Processing, 2014, 115, 53-56.	2.3	20