Alfons Houben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3232367/publications.pdf

Version: 2024-02-01

49 papers

1,856 citations

304602 22 h-index 42 g-index

49 all docs 49 docs citations

49 times ranked 3238 citing authors

#	Article	IF	CITATIONS
1	Microvascular Dysfunction in Obesity: A Potential Mechanism in the Pathogenesis of Obesity-Associated Insulin Resistance and Hypertension. Physiology, 2007, 22, 252-260.	1.6	197
2	Association of Microvascular Dysfunction With Late-Life Depression. JAMA Psychiatry, 2017, 74, 729.	6.0	192
3	Prediabetes and Type 2 Diabetes Are Associated With Generalized Microvascular Dysfunction. Circulation, 2016, 134, 1339-1352.	1.6	183
4	The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology, 2017, 32, 197-209.	1.6	103
5	Endothelial dysfunction in (pre)diabetes: Characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 39-48.	2.6	102
6	Microvascular Dysfunction Is Associated With a Higher Incidence of Type 2 Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 3082-3094.	1.1	93
7	Microvascular dysfunction as a link between obesity, insulin resistance and hypertension. Diabetes Research and Clinical Practice, 2014, 103, 382-387.	1.1	90
8	Assessing Microvascular Function in Humans from a Chronic Disease Perspective. Journal of the American Society of Nephrology: JASN, 2017, 28, 3461-3472.	3.0	90
9	Prediabetes Is Associated With Structural Brain Abnormalities: The Maastricht Study. Diabetes Care, 2018, 41, 2535-2543.	4.3	68
10	Microvascular dysfunction: An emerging pathway in the pathogenesis of obesity-related insulin resistance. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 29-38.	2.6	62
11	Diet-induced weight loss improves not only cardiometabolic risk markers but also markers of vascular function: a randomized controlled trial in abdominally obese men. American Journal of Clinical Nutrition, 2017, 105, 23-31.	2.2	55
12	Capillary Rarefaction Associates with Albuminuria: The Maastricht Study. Journal of the American Society of Nephrology: JASN, 2016, 27, 3748-3757.	3.0	51
13	Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease. Current Cardiovascular Risk Reports, 2012, 6, 80-90.	0.8	49
14	Microvascular Dysfunction Is Associated With Worse Cognitive Performance. Hypertension, 2020, 75, 237-245.	1.3	47
15	Microvascular endothelial dysfunction is associated with albuminuria. Journal of Hypertension, 2018, 36, 1178-1187.	0.3	44
16	Associations of Arterial Stiffness With Cognitive Performance, and the Role of Microvascular Dysfunction. Hypertension, 2020, 75, 1607-1614.	1.3	29
17	Obesity is associated with impaired endothelial function in the postprandial state. Microvascular Research, 2011, 82, 423-429.	1.1	28
18	Endothelial vasodilatation in newborns is related to body size and maternal hypertension. Journal of Hypertension, 2012, 30, 124-131.	0.3	27

#	Article	IF	CITATIONS
19	Independent tissue contributors to obesity-associated insulin resistance. JCI Insight, 2017, 2, .	2.3	25
20	Age, waist circumference, and blood pressure are associated with skin microvascular flow motion. Journal of Hypertension, 2014, 32, 2439-2449.	0.3	24
21	Angiotensin II Enhances Insulin-Stimulated Whole-Body Glucose Disposal but Impairs Insulin-Induced Capillary Recruitment in Healthy Volunteers. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3901-3908.	1.8	23
22	Microvascular Phenotyping in the Maastricht Study: Design and Main Findings, 2010–2018. American Journal of Epidemiology, 2020, 189, 873-884.	1.6	23
23	Semi-automatic assessment of skin capillary density: Proof of principle and validation. Microvascular Research, 2013, 90, 192-198.	1.1	22
24	Physical Activity Is Associated With Glucose Tolerance Independent of Microvascular Function: The Maastricht Study. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3324-3332.	1.8	18
25	Type 2 diabetes and HbA1c are independently associated with wider retinal arterioles: the Maastricht study. Diabetologia, 2020, 63, 1408-1417.	2.9	18
26	Association of Markers of Microvascular Dysfunction With Prevalent and Incident Depressive Symptoms. Hypertension, 2020, 76, 342-349.	1.3	18
27	Cardiovascular risk factors as determinants of retinal and skin microvascular function: The Maastricht Study. PLoS ONE, 2017, 12, e0187324.	1.1	17
28	Intact and C-Terminal FGF23 Assaysâ€"Do Kidney Function, Inflammation, and Low Iron Influence Relationships With Outcomes?. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4875-e4885.	1.8	16
29	Acute angiotensin II receptor blockade improves insulin-induced microvascular function in hypertensive individuals. Microvascular Research, 2011, 82, 77-83.	1.1	14
30	The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules, 2022, 12, 278.	1.8	14
31	A 4-Week Diet Low or High in Advanced Glycation Endproducts Has Limited Impact on Gut Microbial Composition in Abdominally Obese Individuals: The deAGEing Trial. International Journal of Molecular Sciences, 2022, 23, 5328.	1.8	13
32	Hyperglycemia Is the Main Mediator of Prediabetes- and Type 2 Diabetes–Associated Impairment of Microvascular Function: The Maastricht Study. Diabetes Care, 2017, 40, e103-e105.	4.3	12
33	Contribution of Liver Fat to Weight Loss–Induced Changes in Serum Hepatokines: A Randomized Controlled Trial. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2719-2727.	1.8	12
34	Blood pressure variability and microvascular dysfunction: the Maastricht Study. Journal of Hypertension, 2020, 38, 1541-1550.	0.3	11
35	Extracerebral microvascular dysfunction is related to brain MRI markers of cerebral small vessel disease: The Maastricht Study. GeroScience, 2022, 44, 147-157.	2.1	10
36	Growth and Endothelial Function in the First 2ÂYears of Life. Journal of Pediatrics, 2015, 166, 666-671.e1.	0.9	8

3

#	Article	IF	CITATIONS
37	Habitual intake of dietary advanced glycation end products is not associated with generalized microvascular function—the Maastricht Study. American Journal of Clinical Nutrition, 2022, 115, 444-455.	2.2	8
38	Higher levels of daily physical activity are associated with better skin microvascular function in type 2 diabetesâ€"The Maastricht Study. Microcirculation, 2020, 27, e12611.	1.0	7
39	Habitual Intake of Dietary Advanced Glycation End Products Is Not Associated with Arterial Stiffness of the Aorta and Carotid Artery in Adults: The Maastricht Study. Journal of Nutrition, 2021, 151, 1886-1893.	1.3	7
40	Microcirculatory assessment of vascular diseases. Vasa - European Journal of Vascular Medicine, 2020, 49, 175-186.	0.6	7
41	Hemolysis Compromises Nitric Oxide-Dependent Vasodilatory Responses in Patients Undergoing Major Cardiovascular Surgery. Thoracic and Cardiovascular Surgeon, 2012, 60, 255-261.	0.4	4
42	Carotid stiffness is associated with retinal microvascular dysfunctionâ€"The Maastricht study. Microcirculation, 2021, 28, e12702.	1.0	4
43	Microvascular dysfunction: Determinants and treatment, with a focus on hyperglycemia. Endocrine and Metabolic Science, 2021, 2, 100073.	0.7	3
44	Renal Clearance of Fibroblast Growth Factor-23 (FGF23) and its Fragments in Humans. Journal of Bone and Mineral Research, 2020, 37, 1170-1178.	3.1	3
45	Retinal microvascular diameters. Journal of Hypertension, 2017, 35, 1573-1574.	0.3	2
46	Effects of Diet-Induced Weight Loss on Plasma Markers for Cholesterol Absorption and Synthesis: Secondary Analysis of a Randomized Trial in Abdominally Obese Men. Nutrients, 2022, 14, 1546.	1.7	2
47	Aldosterone Is Not Associated With Metabolic and Microvascular Insulin Sensitivity in Abdominally Obese Men. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 759-767.	1.8	1
48	Response by Sörensen et al to Letters Regarding Article, "Prediabetes and Type 2 Diabetes Are Associated With Generalized Microvascular Dysfunction: The Maastricht Study― Circulation, 2017, 135, e862-e863.	1.6	0
49	Joint ESM-EVBO meetings: past, present, and future. Cardiovascular Research, 2019, 115, e46-e48.	1.8	O