Ermanno Cardelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3232086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurements of magnetic characteristics of laminated Fe-Si steel filter inductors in grid interface converters. Measurement: Journal of the International Measurement Confederation, 2022, 195, 111108.	2.5	2
2	Energy from the Waves: Integration of a HESS to a Wave Energy Converter in a DC Bus Electrical Architecture to Enhance Grid Power Quality. Energies, 2022, 15, 10.	1.6	4
3	Protection From Indirect Lightning Effects for Power Converters in Avionic Environment: Modeling and Experimental Validation. IEEE Transactions on Industrial Electronics, 2021, 68, 7850-7862.	5.2	12
4	Vector Hysteresis Processes for Innovative Fe-Si Magnetic Powder Cores: Experiments and Neural Network Modeling. Magnetochemistry, 2021, 7, 18.	1.0	5
5	Properties of Additively Manufactured Electric Steel Powder Cores with Increased Si Content. Materials, 2021, 14, 1489.	1.3	44
6	An effective neural network approach to reproduce magnetic hysteresis in electrical steel under arbitrary excitation waveforms. Journal of Magnetism and Magnetic Materials, 2021, 528, 167735.	1.0	27
7	Design and Comparison of the Performance of 12-Pulse Rectifiers for Aerospace Applications. Energies, 2021, 14, 6312.	1.6	6
8	Influence of Non-Linearity in Losses Estimation of Magnetic Components for DC-DC Converters. Energies, 2021, 14, 6498.	1.6	12
9	Modelling of dynamic losses in soft ferrite cores. Physica B: Condensed Matter, 2020, 579, 411811.	1.3	7
10	Analytical formulation to estimate the dynamic energy loss in electrical steels: Effectiveness and limitations. Physica B: Condensed Matter, 2020, 579, 411899.	1.3	8
11	Adaptive voltage control of islanded RES-based residential microgrid with integrated flywheel/battery hybrid energy storage system. , 2020, , .		3
12	Neural Modelling of Magnetic Materials for Aircraft Power Converters Simulations. , 2020, , .		0
13	Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids. Energy, 2020, 204, 117939.	4.5	30
14	On the Analysis of the Dynamic Energy Losses in NGO Electrical Steels Under Non-Sinusoidal Polarization Waveforms. IEEE Transactions on Magnetics, 2020, 56, 1-15.	1.2	12
15	Modeling of Combined Metal Oxide Varistors and Ferrite Core Filters to Augment Avionic Safety During Lightning Transients. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2012-2023.	1.4	4
16	Time domain modelling of soft ferrite inductors for power converters applications. , 2019, , .		2
17	Towards online evaluation of Goss-texture in grain-oriented ferromagnetic sheets. Journal of Magnetism and Magnetic Materials, 2019, 473, 136-143.	1.0	3
18	Pattern search approach to ferromagnetic material modelling. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2019, 32, e2271.	1.2	13

#	Article	IF	CITATIONS
19	Properties of uniaxial media model. Physica B: Condensed Matter, 2018, 549, 40-42.	1.3	0
20	Optimal design of lightning pulse generators for the experimental study of indirect effects in avionic systems. International Journal of Applied Electromagnetics and Mechanics, 2018, 56, 123-131.	0.3	0
21	Vector magnetization of a distribution of cubic particles. AIP Advances, 2017, 7, .	0.6	1
22	Modeling of Inductive Blocking Devices for the Mitigation of Indirect Lightning Effects. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	3
23	A challenging hysteresis operator for the simulation of Goss-textured magnetic materials. Journal of Magnetism and Magnetic Materials, 2017, 432, 14-23.	1.0	25
24	Generalization of the vector hysteron model through the dependence of moving functions on frequency. , 2017, , .		1
25	Implementation of the Single Hysteron Model in a Finite-Element Scheme. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	15
26	Surface Testing the Crystal Grain Orientation by Lag Angle Plots. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	13
27	Magnetic losses in Si-Fe alloys for avionic applications. AIP Advances, 2017, 7, .	0.6	13
28	Computer Modeling of Nickel–Iron Alloy in Power Electronics Applications. IEEE Transactions on Industrial Electronics, 2017, 64, 2494-2501.	5.2	36
29	In-Plane Magnetic Anisotropy Detection of Crystal Grain Orientation in Goss-Textured Ferromagnets. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	4
30	Magnetic materials characterization by Tabu Search optimization. , 2017, , .		2
31	Magnetic sensors for motion measurement of avionic ballscrews. AIP Advances, 2017, 7, 056639.	0.6	7
32	In-plane magnetic anisotropy detection for crystal grain orientation in Goss-textured ferromagnets. , 2017, , .		2
33	Implementation of the Single Hysteron Model in a Finite Element Scheme. , 2017, , .		1
34	Continuous Flock-of-Starlings Optimization for a general magnetic hysteresis model. International Journal of Applied Electromagnetics and Mechanics, 2017, 53, S229-S238.	0.3	2
35	Materials characterization by Inverse Neural Network approach. , 2016, , .		0
36	Modeling of inductive blocking devices for the mitigation of indirect lightning effects. , 2016, , .		0

#	Article	IF	CITATIONS
37	Magnetic modelling for the texture analysis of Fe-Si alloys. , 2016, , .		1
38	10th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2015). Physica B: Condensed Matter, 2016, 486, iii.	1.3	0
39	Two-dimensional magnetic modeling of ferromagnetic materials by using a neural networks based hybrid approach. Physica B: Condensed Matter, 2016, 486, 106-110.	1.3	24
40	A moving approach for the Vector Hysteron Model. Physica B: Condensed Matter, 2016, 486, 92-96.	1.3	33
41	A Neural-FEM tool for the 2-D magnetic hysteresis modeling. Physica B: Condensed Matter, 2016, 486, 111-115.	1.3	23
42	An equipment for photovoltaic panels characterization based on a fully programmable DC-DC converter. , 2016, , .		2
43	A vector model for off-axis hysteresis loops using anisotropy field. Physica B: Condensed Matter, 2016, 501, 113-116.	1.3	6
44	Moving vector hysteron model identification based on neural network inversion. , 2016, , .		3
45	Modelling of vector hysteresis at macromagnetic scale: Open questions and challenges. Physica B: Condensed Matter, 2016, 486, 130-137.	1.3	23
46	Vector hysteresis model identification for iron–silicon thin films from micromagnetic simulations. Physica B: Condensed Matter, 2016, 486, 97-100.	1.3	24
47	A moving approach to magnetic modeling of electrical steels in 2-d. International Journal of Applied Electromagnetics and Mechanics, 2015, 48, 263-270.	0.3	3
48	Advances in Magnetic Hysteresis Modeling. Handbook of Magnetic Materials, 2015, , 323-409.	0.6	44
49	Prediction and Control of Transformer Inrush Currents. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	34
50	Magnetic nondestructive testing of rotor blade tips. Journal of Applied Physics, 2015, 117, 17A705.	1.1	20
51	A neural approach for the numerical modeling of two-dimensional magnetic hysteresis. Journal of Applied Physics, 2015, 117, 17D129.	1.1	32
52	Surface field measurements in vector characterization of Si-Fe magnetic steel samples. International Journal of Applied Electromagnetics and Mechanics, 2014, 44, 331-338.	0.3	35
53	Magnetic material modeling for the optimization of the electrical machine design. , 2014, , .		0
54	Modeling of hysteresis in magnetic multidomains. Physica B: Condensed Matter, 2014, 435, 62-65.	1.3	19

#	Article	IF	CITATIONS
55	Numerical modeling of transformer inrush currents. Physica B: Condensed Matter, 2014, 435, 116-119.	1.3	9
56	Numerical Modeling of Hysteresis in Si-Fe Steels. IEEE Transactions on Magnetics, 2014, 50, 329-332.	1.2	37
57	A Benchmark Problem of Vector Magnetic Hysteresis for Numerical Models. IEEE Transactions on Magnetics, 2014, 50, 1049-1052.	1.2	35
58	Genetic algorithm identification of a H-moving vector hysteresis model. Physica B: Condensed Matter, 2014, 435, 11-15.	1.3	26
59	Numerical two-dimensional modeling of grain oriented steel. Journal of Applied Physics, 2014, 115, 17A327.	1.1	27
60	Vector hysteresis measurements of not oriented grain SiFe steels by a biaxial hall sensors array. Physica B: Condensed Matter, 2014, 435, 34-39.	1.3	31
61	Energy and Losses in Vector Thermal Aftereffect Model. IEEE Transactions on Magnetics, 2013, 49, 1869-1872.	1.2	28
62	Contact-Less Speed Probe Based on Eddy Currents. IEEE Transactions on Magnetics, 2013, 49, 3897-3900.	1.2	19
63	Modeling and simulation of a retrofitted electric car in urban and extra urban driving cycles. , 2012, , .		1
64	Magnetic field exposure systems for the study of ELF effects. , 2012, , .		0
65	Mathematical Modelling of Magnetic Hysteresis in Exchange-Bias Spin Valves. IEEE Transactions on Magnetics, 2012, 48, 3367-3370.	1.2	25
66	Numerical modelling of transformer inrush currents. , 2012, , .		0
67	Magnetic vector aftereffect model. Journal of Applied Physics, 2011, 109, 07D347.	1.1	1
68	A General Hysteresis Operator for the Modeling of Vector Fields. IEEE Transactions on Magnetics, 2011, 47, 2056-2067.	1.2	140
69	Hysteresis loss in vector Preisach models. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2010, 29, 1474-1481.	0.5	3
70	Implementation of the Preisach-Stoner-Wohlfarth Classical Vector Model. IEEE Transactions on Magnetics, 2010, 46, 21-28.	1.2	24
71	Reducing the Non-Linearities of a Spin-Torque Oscillator by Varying the Amplitude of the External Field Applied Along the In-Plane Hard-Axis. IEEE Transactions on Magnetics, 2010, 46, 1519-1522.	1.2	9
72	Modeling of Vector Hysteresis in Si-Fe Magnetic Steels and Experimental Verification. IEEE Transactions on Magnetics, 2010, 46, 3465-3468.	1.2	4

#	Article	IF	CITATIONS
73	Identifying Hysteresis Losses in Magnetic Media. IEEE Transactions on Magnetics, 2010, 46, 3844-3847.	1.2	2
74	A General Vector Hysteresis Operator: Extension to the 3-D Case. IEEE Transactions on Magnetics, 2010, 46, 3990-4000.	1.2	125
75	Nonferromagnetic Open Shields at Industrial Frequency Rate. IEEE Transactions on Magnetics, 2010, 46, 889-898.	1.2	10
76	Vector hysteresis modeling for anisotropic magnetic materials. , 2010, , .		0
77	Combined experimental and modeling analysis to study accommodation phenomenon. , 2010, , .		Ο
78	Micromagnetic simulations of linewidth and nonlinear frequency shift coefficient in spin-torque nanoscillators. , 2010, , .		0
79	Magnetic vortex chirality switching driven by a spin-polarized current. , 2010, , .		0
80	Magnetization dependent vector model and single domain nanostructures. Journal of Applied Physics, 2009, 105, .	1.1	13
81	Numerical Implementation of the DPC Model. IEEE Transactions on Magnetics, 2009, 45, 1186-1189.	1.2	27
82	Numerical Identification Procedure for a Phenomenological Vector Hysteresis Model. IEEE Transactions on Magnetics, 2009, 45, 1166-1169.	1.2	14
83	Experimental Verification of the Deletion and Congruency Properties in Si-Fe Magnetic Steels. IEEE Transactions on Magnetics, 2009, 45, 5243-5246.	1.2	11
84	Analysis of a Unit Magnetic Particle Via the DPC Model. IEEE Transactions on Magnetics, 2009, 45, 5192-5195.	1.2	27
85	Theoretical Considerations of Magnetic Hysteresis and Transformer Inrush Current. IEEE Transactions on Magnetics, 2009, 45, 5247-5250.	1.2	27
86	A model for vector accommodation. Physica B: Condensed Matter, 2008, 403, 496-499.	1.3	1
87	Properties of a class of vector hysteron models. Journal of Applied Physics, 2008, 103, .	1.1	34
88	The AMDE project: 3D volumetric anomalies reconstruction by eddy current testing. International Journal of Applied Electromagnetics and Mechanics, 2008, 28, 321-327.	0.3	1
89	The coordinated vector model. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2007, 26, 327-333.	0.5	2
90	Correction to: "A Preisach–Stoner–Wohlfarth Vector Model― IEEE Transactions on Magnetics, 2007, 43, 1127-1127.	1.2	1

#	Article	IF	CITATIONS
91	Analysis and Simulation of Rotating Magnetic Field Diffusion Through a Parallelogram Hysteresis Model. IEEE Transactions on Magnetics, 2007, 43, 1409-1412.	1.2	Ο
92	Spin-Transfer Torque Switching in Magnetic Multilayers. IEEE Transactions on Magnetics, 2007, 43, 1677-1680.	1.2	3
93	Image Reconstruction of Defects in Metallic Plates Using a Multifrequency Detector System and a Discrete Geometric Approach. IEEE Transactions on Magnetics, 2007, 43, 1857-1860.	1.2	15
94	Vector hysteresis measurements via a single disk tester. Physica B: Condensed Matter, 2006, 372, 143-146.	1.3	21
95	Vector modeling—Part I: Generalized hysteresis model. Physica B: Condensed Matter, 2006, 372, 111-114.	1.3	62
96	Vector modeling—Part II: Ellipsoidal vector hysteresis model. Numerical application to a 2D case. Physica B: Condensed Matter, 2006, 372, 115-119.	1.3	47
97	Fast computing vector hysteresis model. Physica B: Condensed Matter, 2006, 372, 128-132.	1.3	1
98	About identification of Scalar Preisach functions of soft magnetic materials. IEEE Transactions on Magnetics, 2006, 42, 923-926.	1.2	26
99	Numerical implementation of the radial vector hysteresis model. IEEE Transactions on Magnetics, 2006, 42, 527-530.	1.2	14
100	A simplified model for vector hysteresis computation. IEEE Transactions on Magnetics, 2006, 42, 955-958.	1.2	8
101	A Preisach-Stoner–Wohlfarth Vector Model. IEEE Transactions on Magnetics, 2006, 42, 3126-3128.	1.2	12
102	Vector Hysteresis Model at Micromagnetic Scale. IEEE Transactions on Magnetics, 2006, 42, 3138-3140.	1.2	9
103	Analytical solution of Everett integral using Lorentzian Preisach function approximation. Journal of Magnetism and Magnetic Materials, 2006, 300, 451-470.	1.0	16
104	Magnetic energy and radial vector model of hysteresis. Journal of Applied Physics, 2006, 99, 08D703.	1.1	11
105	Vector Hysteresis Model at Micromagnetic Scale. , 2006, , .		0
106	A Preisach-Stoner-Wohlfarth Vector Model. , 2006, , .		0
107	Analysis methodologies and experimental benchmarks for eddy current testing. IEEE Transactions on Magnetics, 2005, 41, 1380-1383.	1.2	9
108	Using the reduced Preisach vector model to predict the cut angle influence in Si-Fe steels. IEEE Transactions on Magnetics, 2005, 41, 1560-1563.	1.2	2

Ermanno Cardelli

#	Article	IF	CITATIONS
109	Epstein frame: how and when it can be really representative about the magnetic behavior of laminated magnetic steels. IEEE Transactions on Magnetics, 2005, 41, 1516-1519.	1.2	31
110	On the reduced vector Preisach model of hysteresis. Journal of Applied Physics, 2005, 97, 10E516.	1.1	0
111	Micromagnetic eddy currents in conducting cylinders. Journal of Applied Physics, 2005, 97, 10E308.	1.1	2
112	FEM time domain analysis for the detection of depth and thickness of cylindrical defects in metallic plates. IEEE Transactions on Magnetics, 2005, 41, 1616-1619.	1.2	9
113	Single sheet tester efficiency macromagnetic analysis. Journal of Applied Physics, 2005, 97, 10E103.	1.1	3
114	FEM analysis of thin cracks in metallic plates. International Journal of Applied Electromagnetics and Mechanics, 2004, 19, 503-507.	0.3	6
115	A comparative study of Preisach scalar hysteresis models. Physica B: Condensed Matter, 2004, 343, 164-170.	1.3	18
116	Influence of the cut angle and grain size on the behavior of non-oriented magnetic steels. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3365-3368.	0.8	0
117	About the role of hysteresis in magnetic penetration at extremely low frequency. Physica B: Condensed Matter, 2004, 343, 153-158.	1.3	1
118	Modeling of laminas of magnetic iron with a Reduced Vector Preisach Model. Physica B: Condensed Matter, 2004, 343, 171-176.	1.3	4
119	Identifying the Parameters of the Reduced Vector Preisach Model: Theory and Experiment. IEEE Transactions on Magnetics, 2004, 40, 2164-2166.	1.2	8
120	Parallelogram-Shaped Hysteresis Loops for Describing the Energetic Magnetic Behavior of Hysteretic Media. IEEE Transactions on Magnetics, 2004, 40, 880-883.	1.2	6
121	Increasing the Accuracy of the Numerical Identification of the Modified Scalar Preisach Model. IEEE Transactions on Magnetics, 2004, 40, 892-895.	1.2	7
122	Identifying the preisach function for soft magnetic materials. IEEE Transactions on Magnetics, 2003, 39, 1341-1344.	1.2	15
123	Evaluation of surface impedance of hysteretic materials. IEEE Transactions on Magnetics, 2003, 39, 1369-1372.	1.2	2
124	Stable FDITD formulation for electromagnetic field diffusion in soft magnetic materials. IEEE Transactions on Magnetics, 2003, 39, 1681-1684.	1.2	9
125	Analysis of magnetic losses of cylindrical cores in the frequency domain. IEEE Transactions on Magnetics, 2003, 39, 1365-1368.	1.2	4
126	Reversible magnetization and Lorentzian function approximation. Journal of Applied Physics, 2003, 93, 6635-6637.	1.1	26

Ermanno Cardelli

#	Article	IF	CITATIONS
127	Numerical modeling for the localization and the assessment of electromagnetic field sources. IEEE Transactions on Magnetics, 2003, 39, 1638-1641.	1.2	14
128	Remarks about preisach function approximation using lorentzian function and its identification for nonoriented steels. IEEE Transactions on Magnetics, 2003, 39, 3028-3030.	1.2	27
129	Computing the surface impedance in nonlinear materials with hysteresis. Journal of Applied Physics, 2003, 93, 6650-6652.	1.1	5
130	Numerical modelling in the time domain of dynamic hysteresis of soft materials in cylindrical coordinates. Journal of Applied Physics, 2003, 93, 6647-6649.	1.1	2
131	Analysis of shielding performance in nonlinear media. IEEE Transactions on Magnetics, 2002, 38, 817-820.	1.2	6
132	Identification of the Preisach probability functions for soft magnetic materials. IEEE Transactions on Magnetics, 2001, 37, 3366-3369.	1.2	27
133	Experimental analysis of hysteresis in low frequency magnetic shields. Physica B: Condensed Matter, 2001, 306, 62-66.	1.3	2
134	Implementation of the modified Preisach scalar model in the finite difference–time-domain numerical modeling. Physica B: Condensed Matter, 2001, 306, 126-131.	1.3	6
135	Modeling of hysteresis and dynamic losses in soft ferrites up to radiofrequency level. Physica B: Condensed Matter, 2001, 306, 240-245.	1.3	10
136	Estimation of MnZn ferrite core losses in magnetic components at high frequency. IEEE Transactions on Magnetics, 2001, 37, 2366-2368.	1.2	27
137	Automatic parameter identification for the multilayer media Preisach model. Journal of Applied Physics, 2001, 89, 7242-7244.	1.1	3
138	Modelling of magnetic cores for power electronics applications. Physica B: Condensed Matter, 2000, 275, 154-158.	1.3	29
139	Experimental determination of Preisach distribution functions in magnetic cores. Physica B: Condensed Matter, 2000, 275, 262-269.	1.3	25
140	Direct and inverse Preisach modeling of soft materials. IEEE Transactions on Magnetics, 2000, 36, 1267-1271.	1.2	46
141	Identification of parameters in multilayer media. IEEE Transactions on Magnetics, 2000, 36, 1272-1275.	1.2	8
142	Electro-thermal behavior of solid armatures. IEEE Transactions on Magnetics, 1999, 35, 47-52.	1.2	7
143	Interaction between grounding systems and electrostatic discharge events. IEEE Transactions on Magnetics, 1998, 34, 2803-2806.	1.2	3
144	Three-dimensional calculation of the magnetic field created by current-carrying massive disks. IEEE Transactions on Magnetics, 1998, 34, 2601-2604.	1.2	25

#	Article	IF	CITATIONS
145	Analysis of drifting charged aerosols from HVDC ionizers via a hybrid CSMâ€FD method. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1998, 17, 620-627.	0.5	1
146	Numerical comparison between a differential and an integral approach in MHD simulations of electromagnetic railgun plasma armatures. IEEE Transactions on Magnetics, 1997, 33, 219-224.	1.2	3
147	Numerical techniques in electromagnetic compatibility-oriented design of rail launchers operating with plasma armatures. IEEE Transactions on Magnetics, 1997, 33, 208-212.	1.2	5
148	Velocity skin-effect transition conditions on metal-on-metal sliding contacts in muzzle-fed railguns. IEEE Transactions on Magnetics, 1997, 33, 37-42.	1.2	4
149	Numerical analysis of diffracting perforated shields. IEEE Transactions on Magnetics, 1997, 33, 1472-1475.	1.2	3
150	Open-boundary, single-dielectric charge simulation method with the use of surface simulating charges. IEEE Transactions on Magnetics, 1997, 33, 1192-1195.	1.2	0
151	Numerical modeling of electromagnetic fields generated by electrostatic discharges. IEEE Transactions on Magnetics, 1997, 33, 2199-2202.	1.2	19
152	An approach to the analysis of the electromagnetic interferences radiated by metallic grids struck by lightning. IEEE Transactions on Magnetics, 1997, 33, 1804-1807.	1.2	5
153	3-D circuital approach for the analysis of the electromagnetic transient diffusion of heat and current in conductive bodies. IEEE Transactions on Magnetics, 1996, 32, 1034-1037.	1.2	2
154	Analytical evaluation of magnetic energy and stresses in 3-D conductor systems. IEEE Transactions on Magnetics, 1996, 32, 547-551.	1.2	5
155	Finite-difference frequency-domain (FDFD) modelling of EMI by ESD. IEEE Transactions on Magnetics, 1995, 31, 2064-2067.	1.2	7
156	Modelling of the transient diffusion of current and heat in railguns via an equivalent network. IEEE Transactions on Magnetics, 1995, 31, 570-575.	1.2	4
157	Electromagnetic and thermal analysis of muzzle-fed railguns. IEEE Transactions on Magnetics, 1995, 31, 113-117.	1.2	2
158	Numerical modelling of 3-D coupled electromagnetic and heating diffusion problems. IEEE Transactions on Magnetics, 1994, 30, 3335-3338.	1.2	3
159	Three dimensional electromagnetic field due to electric discharge by an analytical approach. IEEE Transactions on Magnetics, 1994, 30, 3052-3055.	1.2	1
160	Magnetic field evaluation for thick annular conductors. IEEE Transactions on Magnetics, 1993, 29, 2090-2094.	1.2	26
161	Electromagnetic analysis of RFEC differential probes. IEEE Transactions on Magnetics, 1993, 29, 1849-1852.	1.2	4
162	Some remarks on the current filament modeling of electromagnetic launchers. IEEE Transactions on Magnetics, 1993, 29, 643-648.	1.2	14

#	Article	IF	CITATIONS
163	Three dimensional forces and energy computation software package 'FEMAN' and its applications. IEEE Transactions on Magnetics, 1993, 29, 728-732.	1.2	2
164	Magnetic field evaluation for disk conductors. IEEE Transactions on Magnetics, 1993, 29, 2419-2421.	1.2	20
165	Integral equation approach for the analysis of three-dimensional transient electromagnetic heating effects. IEEE Transactions on Magnetics, 1993, 29, 2440-2442.	1.2	1
166	Modelling of electromagnetic interferences produced by a railgun. IEEE Transactions on Magnetics, 1993, 29, 1125-1130.	1.2	6
167	Integral Equation Approach For The Analysis of Three-dimensional Transient Electromagnetic Heating Effects. , 1993, , .		1
168	Three-dimensional thermal and electromagnetic coupled analysis of railguns. IEEE Transactions on Magnetics, 1993, 29, 356-361.	1.2	13
169	Current distribution in rail launchers via an equivalent network simulation approach. IEEE Transactions on Magnetics, 1992, 28, 1458-1461.	1.2	13
170	A network mesh model for flux compression generators analysis. IEEE Transactions on Magnetics, 1991, 27, 3951-3954.	1.2	7
171	Analytic expressions for magnetic field from finite curved conductors. IEEE Transactions on Magnetics, 1991, 27, 750-757.	1.2	33
172	Analysis of an arc-driven railgun for fusion fuel pellet injection. IEEE Transactions on Magnetics, 1990, 26, 3097-3101.	1.2	5
173	Computation of the magnetic field in massive conductor systems. IEEE Transactions on Magnetics, 1989, 25, 4462-4473.	1.2	45
174	Analysis of the magnetic field distribution in an homopolar generator as a pulse power source of electromagnetic launchers. IEEE Transactions on Magnetics, 1988, 24, 495-499.	1.2	5
175	Classification of eddy current NDT data by probabilistic neural networks. , 0, , .		2
176	Neural blind separation for electromagnetic source localization and assessment. , 0, , .		1
177	Irreversible and reversible magnetization of soft steels for hard and easy axes. , 0, , .		0
178	Remarks about the Lorentzan function approximation in hysteresis modelling of not oriented grain steels. , 0, , .		0
179	Analysis and Simulation of Rotating Magnetic Field Diffusion through a Parallelogram Hysteresis Model. , 0, , .		0
180	Image Reconstruction of Defects in Metallic Plates Using a Multi-Frequency Detector System and a Discrete Geometric Approach. , 0, , .		0

#	Article	IF	CITATIONS
181	FEM Approach to the Numerical Simulation of Vector Hysteresis. , 0, , .		0
182	Penetrating Cracks Assessment in Metallic Plates. , 0, , .		1
183	Spin-transfer torque switching in magnetic multilayers. , 0, , .		0
184	Feasibility Studies for the Detection of Long Defects in Hot Rods. , 0, , .		1
185	Possible Extension of the Radial Vector Model for Magnetic Hysteresis. , 0, , .		0