Claire Dufour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3231317/publications.pdf

Version: 2024-02-01

		147566	189595
51	4,992	31	50
papers	citations	h-index	g-index
54	54	54	5467
Эт	54	Эт	3707
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Digestive nâ€6 Lipid Oxidation, a Key Trigger of Vascular Dysfunction and Atherosclerosis in the Western Diet: Protective Effects of Apple Polyphenols. Molecular Nutrition and Food Research, 2021, 65, e2000487.	1.5	13
2	Advanced characterization of polyphenols from Myrciaria jaboticaba peel and lipid protection in in vitro gastrointestinal digestion. Food Chemistry, 2021, 359, 129959.	4.2	13
3	Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in minipigs challenged with a high fat meal. Food and Function, 2020, 11, 5077-5090.	2.1	19
4	Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa. Journal of Experimental Botany, 2020, 71, 5521-5537.	2.4	27
5	Lipid protection by polyphenol-rich apple matrices is modulated by pH and pepsin in in vitro gastric digestion. Food and Function, 2019, 10, 3942-3954.	2.1	17
6	Procyanidinâ€"Cell Wall Interactions within Apple Matrices Decrease the Metabolization of Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting Microbial Metabolome In Vitro. Nutrients, 2019, 11, 664.	1.7	42
7	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
8	Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chemistry, 2018, 252, 356-365.	4.2	85
9	The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chemistry, 2018, 240, 314-322.	4.2	51
10	Warfarin and Flavonoids Do Not Share the Same Binding Region in Binding to the IIA Subdomain of Human Serum Albumin. Molecules, 2017, 22, 1153.	1.7	36
11	Quantification of 4-hydroxy-2-nonenal-protein adducts in the in vivo gastric digesta of mini-pigs using a GC-MS/MS method with accuracy profile validation. Food and Function, 2016, 7, 3497-3504.	2.1	8
12	Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chemistry, 2016, 213, 58-68.	4.2	82
13	Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion. Food and Function, 2014, 5, 2166.	2.1	61
14	Exposure or release of ferulic acid from wheat aleurone: Impact on its antioxidant capacity. Food Chemistry, 2013, 141, 2355-2362.	4.2	48
15	Ultra-fine grinding increases the antioxidant capacity of wheat bran. Journal of Cereal Science, 2013, 57, 84-90.	1.8	131
16	Inhibition of iron-induced lipid peroxidation by newly identified bacterial carotenoids in model gastric conditions: comparison with common carotenoids. Food and Function, 2013, 4, 698.	2.1	26
17	Dietary Iron-Initiated Lipid Oxidation and Its Inhibition by Polyphenols in Gastric Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 9074-9081.	2.4	57
18	The impact of industrial processing on health-beneficial tomato microconstituents. Food Chemistry, 2012, 134, 1786-1795.	4.2	54

#	Article	IF	Citations
19	Binding of citrus flavanones and their glucuronides and chalcones to human serum albumin. Food and Function, 2011, 2, 617.	2.1	42
20	Food Grade Lingonberry Extract: Polyphenolic Composition and In Vivo Protective Effect against Oxidative Stress. Journal of Agricultural and Food Chemistry, 2011, 59, 3330-3339.	2.4	64
21	CYP1A1 Induction in the Colon by Serum: Involvement of the PPARα Pathway and Evidence for a New Specific Human PPREα Site. PLoS ONE, 2011, 6, e14629.	1.1	23
22	Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Molecular Nutrition and Food Research, 2011, 55, 691-702.	1.5	161
23	Influence of serum albumin and the flavonol quercetin on the peroxidase activity of metmyoglobin. Free Radical Biology and Medicine, 2010, 48, 1162-1172.	1.3	19
24	Chemical Modeling of Heme-Induced Lipid Oxidation in Gastric Conditions and Inhibition by Dietary Polyphenols. Journal of Agricultural and Food Chemistry, 2010, 58, 676-683.	2.4	54
25	Olive phenols efficiently inhibit the oxidation of serum albumin-bound linoleic acid and butyrylcholine esterase. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 240-248.	1.1	26
26	<i>C</i> â€ <scp>D</scp> â€Glucopyranosyl Derivatives of Tocopherols â€" Synthesis and Evaluation as Amphiphilic Antioxidants. European Journal of Organic Chemistry, 2008, 2008, 1869-1883.	1.2	13
27	Synthesis of hydroxycinnamic acid glucuronides and investigation of their affinity for human serum albumin. Organic and Biomolecular Chemistry, 2008, 6, 4253.	1.5	14
28	Flavonoids and their oxidation products protect efficiently albumin-bound linoleic acid in a model of plasma oxidation. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 958-965.	1.1	27
29	Inhibition of the peroxidation of linoleic acid by the flavonoid quercetin within their complex with human serum albumin. Free Radical Biology and Medicine, 2007, 43, 241-252.	1.3	35
30	Flavonoid— Protein Interactions. , 2005, , 443-469.		5
31	Regio- and stereoselective oxidation of linoleic acid bound to serum albumin: identification by ESI–mass spectrometry and NMR of the oxidation products. Chemistry and Physics of Lipids, 2005, 138, 60-68.	1.5	44
32	Flavonoid–serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 2005, 1721, 164-173.	1.1	474
33	Antioxidant activity of olive phenols: mechanistic investigation and characterization of oxidation products by mass spectrometry. Organic and Biomolecular Chemistry, 2005, 3, 423.	1.5	123
34	Quantitative Kinetic Analysis of Hydrogen Transfer Reactions from Dietary Polyphenols to the DPPH Radical. Journal of Agricultural and Food Chemistry, 2003, 51, 615-622.	2.4	311
35	Gallic Esters of Sucrose as Efficient Radical Scavengers in Lipid Peroxidation. Journal of Agricultural and Food Chemistry, 2002, 50, 3425-3430.	2.4	18
36	Binding of flavonoids to plasma proteins. Methods in Enzymology, 2001, 335, 319-333.	0.4	98

#	Article	IF	CITATIONS
37	Inhibition of lipid peroxidation by quercetin and quercetin derivatives: antioxidant and prooxidant effects. Perkin Transactions II RSC, 2000, , 1215-1222.	1.1	37
38	Antioxidant properties of anthocyanins and tannins: a mechanistic investigation with catechin and the $3\hat{a}\in ^2$, $4\hat{a}\in ^2$, 7 -trihydroxyflavylium ion. Perkin Transactions II RSC, 2000, , 1653-1663.	1.1	56
39	Interactions between Anthocyanins and Aroma Substances in a Model System. Effect on the Flavor of Grape-Derived Beverages. Journal of Agricultural and Food Chemistry, 2000, 48, 1784-1788.	2.4	58
40	One-electron oxidation of quercetin and quercetin derivatives in protic and non protic media. Journal of the Chemical Society Perkin Transactions II, 1999, , 1387-1396.	0.9	122
41	Flavonol–serum albumin complexation. Two-electron oxidation of flavonols and their complexes with serum albumin. Journal of the Chemical Society Perkin Transactions II, 1999, , 737-744.	0.9	75
42	Influence of Wine Structurally Different Polysaccharides on the Volatility of Aroma Substances in a Model System. Journal of Agricultural and Food Chemistry, 1999, 47, 671-677.	2.4	95
43	Interactions between Wine Polyphenols and Aroma Substances. An Insight at the Molecular Level. Journal of Agricultural and Food Chemistry, 1999, 47, 678-684.	2.4	144
44	Rapid Synthesis of Di- and Triquinanes by Direct Reductive Fragmentation of Paternoâ^Büchi-Derived Oxetanes. Journal of Organic Chemistry, 1998, 63, 5302-5303.	1.7	23
45	Unexpected fragmentations leading to quinanes and hydrindanes mediated by a silyl radical. Tetrahedron Letters, 1996, 37, 7867-7870.	0.7	9
46	Photocyclization-fragmentation route to di- and triquinanes: Stereocontrolled asymmetric synthesis of (-)-isocomene. Pure and Applied Chemistry, 1996, 68, 675-678.	0.9	13
47	Photocycloaddition-fragmentation route to quinanes: Alternate fragmentation pathways. Tetrahedron Letters, 1995, 36, 19-22.	0.7	19
48	A General Strategy for Increasing Molecular Complexity: Photocycloaddition-Fragmentation Route to Functionalized Di- and Triquinanes. Journal of the American Chemical Society, 1994, 116, 2613-2614.	6.6	35
49	Stereocontrolled synthesis of isocomene by a novel photocycloaddition–fragmentation strategy. Journal of the Chemical Society Chemical Communications, 1994, , 1797-1798.	2.0	20
50	Scope of alkoxymethyl radical cyclizations. Journal of Organic Chemistry, 1993, 58, 7718-7727.	1.7	35
51	Cyclization of alkoxymethyl radicals. Journal of Organic Chemistry, 1991, 56, 5245-5247.	1.7	36