
## **Claire Dufour**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3231317/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.                                                                                   | 5.5 | 1,873     |
| 2  | Flavonoid–serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 2005, 1721, 164-173. | 1.1 | 474       |
| 3  | Quantitative Kinetic Analysis of Hydrogen Transfer Reactions from Dietary Polyphenols to the DPPH<br>Radical. Journal of Agricultural and Food Chemistry, 2003, 51, 615-622.                    | 2.4 | 311       |
| 4  | Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Molecular Nutrition and Food Research, 2011, 55, 691-702.             | 1.5 | 161       |
| 5  | Interactions between Wine Polyphenols and Aroma Substances. An Insight at the Molecular Level.<br>Journal of Agricultural and Food Chemistry, 1999, 47, 678-684.                                | 2.4 | 144       |
| 6  | Ultra-fine grinding increases the antioxidant capacity of wheat bran. Journal of Cereal Science, 2013, 57, 84-90.                                                                               | 1.8 | 131       |
| 7  | Antioxidant activity of olive phenols: mechanistic investigation and characterization of oxidation products by mass spectrometry. Organic and Biomolecular Chemistry, 2005, 3, 423.             | 1.5 | 123       |
| 8  | One-electron oxidation of quercetin and quercetin derivatives in protic and non protic media. Journal of the Chemical Society Perkin Transactions II, 1999, , 1387-1396.                        | 0.9 | 122       |
| 9  | Binding of flavonoids to plasma proteins. Methods in Enzymology, 2001, 335, 319-333.                                                                                                            | 0.4 | 98        |
| 10 | Influence of Wine Structurally Different Polysaccharides on the Volatility of Aroma Substances in a<br>Model System. Journal of Agricultural and Food Chemistry, 1999, 47, 671-677.             | 2.4 | 95        |
| 11 | Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chemistry, 2018, 252, 356-365.                    | 4.2 | 85        |
| 12 | Seasonal variations of the phenolic constituents in bilberry ( Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chemistry, 2016, 213, 58-68.              | 4.2 | 82        |
| 13 | Flavonol–serum albumin complexation. Two-electron oxidation of flavonols and their complexes<br>with serum albumin. Journal of the Chemical Society Perkin Transactions II, 1999, , 737-744.    | 0.9 | 75        |
| 14 | Food Grade Lingonberry Extract: Polyphenolic Composition and In Vivo Protective Effect against<br>Oxidative Stress. Journal of Agricultural and Food Chemistry, 2011, 59, 3330-3339.            | 2.4 | 64        |
| 15 | Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion. Food and Function, 2014, 5, 2166.                                                      | 2.1 | 61        |
| 16 | Interactions between Anthocyanins and Aroma Substances in a Model System. Effect on the Flavor of<br>Grape-Derived Beverages. Journal of Agricultural and Food Chemistry, 2000, 48, 1784-1788.  | 2.4 | 58        |
| 17 | Dietary Iron-Initiated Lipid Oxidation and Its Inhibition by Polyphenols in Gastric Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 9074-9081.                                | 2.4 | 57        |
| 18 | Antioxidant properties of anthocyanins and tannins: a mechanistic investigation with catechin and the 3â€2,4â€2,7-trihydroxyflavylium ion. Perkin Transactions II RSC, 2000, , 1653-1663.       | 1.1 | 56        |

CLAIRE DUFOUR

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chemical Modeling of Heme-Induced Lipid Oxidation in Gastric Conditions and Inhibition by Dietary<br>Polyphenols. Journal of Agricultural and Food Chemistry, 2010, 58, 676-683.                                                                  | 2.4 | 54        |
| 20 | The impact of industrial processing on health-beneficial tomato microconstituents. Food Chemistry, 2012, 134, 1786-1795.                                                                                                                          | 4.2 | 54        |
| 21 | The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chemistry, 2018, 240, 314-322.                                                            | 4.2 | 51        |
| 22 | Exposure or release of ferulic acid from wheat aleurone: Impact on its antioxidant capacity. Food Chemistry, 2013, 141, 2355-2362.                                                                                                                | 4.2 | 48        |
| 23 | Regio- and stereoselective oxidation of linoleic acid bound to serum albumin: identification by<br>ESI–mass spectrometry and NMR of the oxidation products. Chemistry and Physics of Lipids, 2005, 138,<br>60-68.                                 | 1.5 | 44        |
| 24 | Binding of citrus flavanones and their glucuronides and chalcones to human serum albumin. Food and Function, 2011, 2, 617.                                                                                                                        | 2.1 | 42        |
| 25 | Procyanidin—Cell Wall Interactions within Apple Matrices Decrease the Metabolization of<br>Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting<br>Microbial Metabolome In Vitro. Nutrients, 2019, 11, 664. | 1.7 | 42        |
| 26 | Inhibition of lipid peroxidation by quercetin and quercetin derivatives: antioxidant and prooxidant effects. Perkin Transactions II RSC, 2000, , 1215-1222.                                                                                       | 1.1 | 37        |
| 27 | Cyclization of alkoxymethyl radicals. Journal of Organic Chemistry, 1991, 56, 5245-5247.                                                                                                                                                          | 1.7 | 36        |
| 28 | Warfarin and Flavonoids Do Not Share the Same Binding Region in Binding to the IIA Subdomain of<br>Human Serum Albumin. Molecules, 2017, 22, 1153.                                                                                                | 1.7 | 36        |
| 29 | Scope of alkoxymethyl radical cyclizations. Journal of Organic Chemistry, 1993, 58, 7718-7727.                                                                                                                                                    | 1.7 | 35        |
| 30 | A General Strategy for Increasing Molecular Complexity: Photocycloaddition-Fragmentation Route to<br>Functionalized Di- and Triquinanes. Journal of the American Chemical Society, 1994, 116, 2613-2614.                                          | 6.6 | 35        |
| 31 | Inhibition of the peroxidation of linoleic acid by the flavonoid quercetin within their complex with human serum albumin. Free Radical Biology and Medicine, 2007, 43, 241-252.                                                                   | 1.3 | 35        |
| 32 | Flavonoids and their oxidation products protect efficiently albumin-bound linoleic acid in a model of<br>plasma oxidation. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 958-965.                                                 | 1.1 | 27        |
| 33 | Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa. Journal of Experimental Botany, 2020, 71, 5521-5537.                                                              | 2.4 | 27        |
| 34 | Olive phenols efficiently inhibit the oxidation of serum albumin-bound linoleic acid and<br>butyrylcholine esterase. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 240-248.                                                       | 1.1 | 26        |
| 35 | Inhibition of iron-induced lipid peroxidation by newly identified bacterial carotenoids in model gastric conditions: comparison with common carotenoids. Food and Function, 2013, 4, 698.                                                         | 2.1 | 26        |
| 36 | Rapid Synthesis of Di- and Triquinanes by Direct Reductive Fragmentation of Paternoâ^'Büchi-Derived<br>Oxetanes. Journal of Organic Chemistry, 1998, 63, 5302-5303.                                                                               | 1.7 | 23        |

CLAIRE DUFOUR

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | CYP1A1 Induction in the Colon by Serum: Involvement of the PPARα Pathway and Evidence for a New Specific Human PPREα Site. PLoS ONE, 2011, 6, e14629.                                                                     | 1.1 | 23        |
| 38 | Stereocontrolled synthesis of isocomene by a novel photocycloaddition–fragmentation strategy.<br>Journal of the Chemical Society Chemical Communications, 1994, , 1797-1798.                                              | 2.0 | 20        |
| 39 | Photocycloaddition-fragmentation route to quinanes: Alternate fragmentation pathways.<br>Tetrahedron Letters, 1995, 36, 19-22.                                                                                            | 0.7 | 19        |
| 40 | Influence of serum albumin and the flavonol quercetin on the peroxidase activity of metmyoglobin.<br>Free Radical Biology and Medicine, 2010, 48, 1162-1172.                                                              | 1.3 | 19        |
| 41 | Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic<br>response of apple polyphenols in minipigs challenged with a high fat meal. Food and Function, 2020, 11,<br>5077-5090. | 2.1 | 19        |
| 42 | Gallic Esters of Sucrose as Efficient Radical Scavengers in Lipid Peroxidation. Journal of Agricultural and Food Chemistry, 2002, 50, 3425-3430.                                                                          | 2.4 | 18        |
| 43 | Lipid protection by polyphenol-rich apple matrices is modulated by pH and pepsin in in vitro gastric digestion. Food and Function, 2019, 10, 3942-3954.                                                                   | 2.1 | 17        |
| 44 | Synthesis of hydroxycinnamic acid glucuronides and investigation of their affinity for human serum albumin. Organic and Biomolecular Chemistry, 2008, 6, 4253.                                                            | 1.5 | 14        |
| 45 | Photocyclization-fragmentation route to di- and triquinanes: Stereocontrolled asymmetric synthesis of (-)-isocomene. Pure and Applied Chemistry, 1996, 68, 675-678.                                                       | 0.9 | 13        |
| 46 | <i>C</i> â€ <scp>D</scp> â€Glucopyranosyl Derivatives of Tocopherols – Synthesis and Evaluation as<br>Amphiphilic Antioxidants. European Journal of Organic Chemistry, 2008, 2008, 1869-1883.                             | 1.2 | 13        |
| 47 | Digestive nâ€6 Lipid Oxidation, a Key Trigger of Vascular Dysfunction and Atherosclerosis in the<br>Western Diet: Protective Effects of Apple Polyphenols. Molecular Nutrition and Food Research, 2021,<br>65, e2000487.  | 1.5 | 13        |
| 48 | Advanced characterization of polyphenols from Myrciaria jaboticaba peel and lipid protection in in vitro gastrointestinal digestion. Food Chemistry, 2021, 359, 129959.                                                   | 4.2 | 13        |
| 49 | Unexpected fragmentations leading to quinanes and hydrindanes mediated by a silyl radical.<br>Tetrahedron Letters, 1996, 37, 7867-7870.                                                                                   | 0.7 | 9         |
| 50 | Quantification of 4-hydroxy-2-nonenal-protein adducts in the in vivo gastric digesta of mini-pigs using a GC-MS/MS method with accuracy profile validation. Food and Function, 2016, 7, 3497-3504.                        | 2.1 | 8         |
| 51 | Flavonoid— Protein Interactions. , 2005, , 443-469.                                                                                                                                                                       |     | 5         |