Deren Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3231072/deren-yang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 856
 21,238
 69
 107

 papers
 citations
 h-index
 g-index

 901
 23,627
 4.8
 7.01

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
856	Stable Cu Catalysts Supported by Two-dimensional SiO with Strong Metal-Support Interaction <i>Advanced Science</i> , 2022 , e2104972	13.6	3
855	Efficient Sensitized Photoluminescence from Erbium Chloride Silicate via Interparticle Energy Transfer <i>Materials</i> , 2022 , 15,	3.5	1
854	Deformation of 4H-SiC: The role of dopants. <i>Applied Physics Letters</i> , 2022 , 120, 052105	3.4	2
853	Anti-reflection effect of large-area ZnO nano-needle array on multi-crystalline silicon solar cells. <i>Materials Science in Semiconductor Processing</i> , 2022 , 138, 106299	4.3	1
852	Stable and wide-wavelength tunable luminescence of CsPbX3 nanocrystals encapsulated in metalBrganic frameworks. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 5550-5558	7.1	3
851	Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes ACS Applied Materials & Interfaces, 2022,	9.5	8
850	The effect and mechanism of current injection to suppress light and elevated temperature induced degradation in p-type cast-mono and multicrystalline silicon Passivated Emitter and Rear cells. <i>Solar Energy</i> , 2022 , 235, 12-18	6.8	2
849	Electroluminescence from light-emitting device with erbium-doped TiO2 film sputtered onp+-Si substrate: Enhancement effect of codoping zirconium. <i>Thin Solid Films</i> , 2022 , 748, 139160	2.2	1
848	Crystal growth and resistivity modulation of n-type phosphorus-doped cast mono-like silicon. <i>Solar Energy</i> , 2022 , 236, 294-300	6.8	1
847	Participation of nitrogen impurities in the growth of grown-in oxide precipitates in nitrogen-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2022 , 131, 155703	2.5	
846	Polarized Laser Switching with Giant Contrast in MOF-Based Mixed-Matrix Membrane <i>Advanced Science</i> , 2022 , e2200953	13.6	2
845	Compensation of p-type doping in Al-doped 4H-SiC. Journal of Applied Physics, 2022, 131, 185703	2.5	2
844	High-responsivity graphene/hyperdoped-silicon heterostructure infrared photodetectors. <i>Optics and Laser Technology</i> , 2022 , 153, 108291	4.2	1
843	Doping-dependent nucleation of basal plane dislocations in 4H-SiC. <i>Journal Physics D: Applied Physics</i> , 2022 , 55, 334002	3	1
842	Sn-Doped BiO nanosheets for highly efficient electrochemical CO reduction toward formate production. <i>Nanoscale</i> , 2021 , 13, 19610-19616	7.7	1
841	Improved Efficiency for Silicon-Based Perovskite Light-Emitting Diodes via Interfacial Hydrophilic Modification. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2101448	4.6	1
840	Elimination of Interfacial-Electrochemical-Reaction-Induced Polarization in Perovskite Single Crystals for Ultrasensitive and Stable X-Ray Detector Arrays. <i>Advanced Materials</i> , 2021 , e2103078	24	15

(2021-2021)

839	Comprehensive understanding on germanium-doping effects on oxygen precipitation in Czochralski silicon wafers with a prior rapid thermal anneal. <i>Applied Physics A: Materials Science and Processing</i> , 2021 , 127, 1	2.6	2	
838	Low-temperature processed Tantalum/ Niobium co-doped TiO2 electron transport layer for high-performance planar perovskite solar cells. <i>Nanotechnology</i> , 2021 ,	3.4	8	
837	On the mechanism underlying the elimination of nitrogen-oxygen shallow thermal donors in nitrogen-doped Czochralski silicon at elevated temperatures. <i>Journal of Applied Physics</i> , 2021 , 129, 145	762	2	
836	Ga-Doped Intermetallic Pd3Pb Nanocubes as a Highly Efficient and Durable Oxygen Reduction Reaction Electrocatalyst. <i>ChemistrySelect</i> , 2021 , 6, 3891-3896	1.8	2	
835	Kinetics Study on Carrier Injection-Induced Degradation and Regeneration at Elevated Temperature in p-Type Cast-Monosilicon Passivated Emitter Rear Contact Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2100035	7.1	4	
834	A microscopic TEM study of the defect layers in cast-mono crystalline silicon wafers induced by diamond-wire sawing. <i>AIP Advances</i> , 2021 , 11, 045103	1.5	1	
833	Facile Synthesis of Pd@PtM (= Rh, Ni, Pd, Cu) Multimetallic Nanorings as Efficient Catalysts for Ethanol Oxidation Reaction. <i>Frontiers in Chemistry</i> , 2021 , 9, 683450	5	О	
832	Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4976-4985	6.1	4	
831	Narrowband Near-Infrared Photodetector Enabled by Dual Functional Internal-Filter-Induced Selective Charge Collection. <i>Advanced Optical Materials</i> , 2021 , 9, 2100288	8.1	12	
830	Toward Wafer-Scale Production of 2D Transition Metal Chalcogenides. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100278	6.4	1	
829	Experimental study of 3D solid-liquid interfaces and their influence on directional solidification silicon ingot. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 224, 110991	6.4	4	
828	Suppress of dislocations induced by feedstocks weight in cast-mono crystalline silicon. <i>Solar Energy</i> , 2021 , 223, 125-131	6.8	2	
827	Electroluminescence from metalBxideBemiconductor devices based on erbium silicate nanocrystals and silicon nanocrystals co-embedded in silicon oxide thin films. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 20659-20667	2.1	3	
826	Understanding the Influence of Cation and Anion Migration on Mixed-Composition Perovskite Solar Cells via Transient Ion Drift. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100225	2.5	2	
825	Microdefect Characteristics in Cast-Mono Silicon Wafers Induced by Slurry Sawing. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2021 , 218, 2000258	1.6	3	
824	Effect of oxygen concentration on minority carrier lifetime at the bottom of quasi-single crystalline silicon. <i>Materials Science in Semiconductor Processing</i> , 2021 , 123, 105497	4.3		
823	Optoelectronic Synaptic Devices for Neuromorphic Computing. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2000099	6	42	
822	All-Earth-Abundant Photothermal Silicon Platform for CO2 Catalysis with Nearly 100% Sunlight Harvesting Ability. <i>Solar Rrl</i> , 2021 , 5, 2000387	7.1	8	

821	Two-Dimensional Silicon for (Photo)Catalysis. Solar Rrl, 2021, 5, 2000392	7.1	7
820	Stabilizing Fullerene for Burn-in-Free and Stable Perovskite Solar Cells under Ultraviolet Preconditioning and Light Soaking. <i>Advanced Materials</i> , 2021 , 33, e2006910	24	22
819	An MOF-Based Luminescent Sensor Array for Pattern Recognition and Quantification of Metal Ions. <i>Advanced Optical Materials</i> , 2021 , 9, 2002180	8.1	8
818	Silicon-based inorganic-organic hybrid optoelectronic synaptic devices simulating cross-modal learning. <i>Science China Information Sciences</i> , 2021 , 64, 1	3.4	4
817	CO Footprint of Thermal Versus Photothermal CO Catalysis. <i>Small</i> , 2021 , 17, e2007025	11	8
816	Sensitized electroluminescence from erbium doped silicon rich oxynitride light emitting devices. Journal of Luminescence, 2021 , 235, 118009	3.8	1
815	A Review on Metastable Silicon Allotropes. <i>Materials</i> , 2021 , 14,	3.5	4
814	Technoeconomically competitive four-terminal perovskite/graphene-silicon tandem solar cells with over 20% efficiency. <i>Journal of Energy Chemistry</i> , 2021 , 63, 477-477	12	О
813	Recent Progress on the Scanning Tunneling Microscopy and Spectroscopy Study of Semiconductor Heterojunctions. <i>Small</i> , 2021 , e2100655	11	1
812	Electroluminescence from the light-emitting devices with erbium-doped SrTiO3 films on oxidized silicon substrate. <i>Optical Materials</i> , 2021 , 119, 111402	3.3	3
811	Investigation on the light and elevated temperature induced degradation of gallium-doped Cz-Si. <i>Solar Energy</i> , 2021 , 225, 407-411	6.8	6
810	Facile Synthesis of PdCuRu Porous Nanoplates as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. <i>Metals</i> , 2021 , 11, 1451	2.3	2
809	Evaluation of large-scale recycled seed for cast monocrystalline silicon: Defect multiplication mechanisms and feasibility. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 230, 111266	6.4	1
808	Cesium-lead-bromide perovskites with balanced stoichiometry enabled by sodium-bromide doping for all-vacuum deposited silicon-based light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2016-2023	7.1	6
807	New Insight into the Metal-Catalyst-Free Direct Chemical Vapor Deposition Growth of Graphene on Silicon Substrates. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 1774-1783	3.8	6
806	Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. <i>Nanoscale Advances</i> , 2021 , 3, 4810-4815	5.1	1
805	Numerical Simulation of a Novel Method for PVT Growth of SiC by Adding a Graphite Block. <i>Crystals</i> , 2021 , 11, 1581	2.3	О
804	Evolution from random lasing to erbium-related electroluminescence from metal-insulator-semiconductor structured light-emitting device with erbium-doped ZnO film on silicon. <i>Journal of Applied Physics</i> , 2020 , 127, 055705	2.5	1

(2020-2020)

803	Origin of Plasticity in Nanostructured Silicon. <i>Physical Review Letters</i> , 2020 , 124, 185701	7.4	7
802	Silicon-based optoelectronic synaptic devices. <i>Chinese Physics B</i> , 2020 , 29, 070703	1.2	10
801	Effects of vacancy defects on the mechanical properties in neutron irradiated Czochralski silicon. Journal of Physics Condensed Matter, 2020 , 32, 275702	1.8	1
800	Optically Stimulated Synaptic Devices Based on the Hybrid Structure of Silicon Nanomembrane and Perovskite. <i>Nano Letters</i> , 2020 , 20, 3378-3387	11.5	46
799	Strain-Induced Corrosion Kinetics at Nanoscale Are Revealed in Liquid: Enabling Control of Corrosion Dynamics of Electrocatalysis. <i>CheM</i> , 2020 , 6, 2257-2271	16.2	24
798	Seed-Assisted Growth of Cast-Mono Silicon for Photovoltaic Application: Challenges and Strategies. <i>Solar Rrl</i> , 2020 , 4, 1900486	7.1	15
797	Zero-power optoelectronic synaptic devices. <i>Nano Energy</i> , 2020 , 73, 104790	17.1	44
796	Facile synthesis of ternary PtPdCu alloy hexapods as highly efficient electrocatalysts for methanol oxidation <i>RSC Advances</i> , 2020 , 10, 12689-12694	3.7	6
795	Confinement effect and low-defect density-induced long lifetime Er silicate nanowire embedded in silicon oxide film. <i>Optics Express</i> , 2020 , 28, 13216-13223	3.3	2
794	Atomistic Surface Passivation of CHNHPbI Perovskite Single Crystals for Highly Sensitive Coplanar-Structure X-Ray Detectors. <i>Research</i> , 2020 , 2020, 5958243	7.8	26
793	Perovskite-Enhanced Silicon-Nanocrystal Optoelectronic Synaptic Devices for the Simulation of Biased and Correlated Random-Walk Learning. <i>Research</i> , 2020 , 2020, 7538450	7.8	4
792	Effects of co-doping nitrogen and germanium on dislocation gliding in Czochralski silicon: Implication for improving mechanical strength. <i>Journal of Applied Physics</i> , 2020 , 128, 235105	2.5	3
791	The role of O2 in CdSeTe thin film deposition and CdSeTe/CdTe solar cell performance. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 214, 110595	6.4	9
790	Local epitaxial growth of Au-Rh core-shell star-shaped decahedra: A case for studying electronic and ensemble effects in hydrogen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 263, 118	8 25 58	23
789	Hydrogen passivation of iron-acceptor pairs in boron and gallium co-doped crystalline silicon. <i>Applied Physics Express</i> , 2020 , 13, 011002	2.4	O
788	Promoting Effect of SiDH on the Decomposition of Electrolytes in Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 6365-6373	9.6	7
787	Unexpected Kirkendall effect in twinned icosahedral nanocrystals driven by strain gradient. <i>Nano Research</i> , 2020 , 13, 2641-2649	10	9
786	Improving CdTe-Based Thin-Film Solar Cell Efficiency with the Oxygenated CdSe Layer Prepared by Sputtering Process. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000560	1.6	1

785	Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors. <i>ACS Applied Materials & District Acceptors</i> , 12, 39515-39523	9.5	24
7 ⁸ 4	Flash Solid-Solid Synthesis of Silicon Oxide Nanorods. <i>Small</i> , 2020 , 16, e2001435	11	1
783	Ink Engineering of Inkjet Printing Perovskite. ACS Applied Materials & amp; Interfaces, 2020, 12, 39082-3	99931	33
782	Oxygen precipitation in Ge-doped Czochralski-silicon at 900 LC investigated by in situ high energy x-ray diffraction. <i>AIP Advances</i> , 2020 , 10, 105324	1.5	
781	Au-Doped intermetallic Pd3Pb wavy nanowires as highly efficient electrocatalysts toward the oxygen reduction reaction. <i>CrystEngComm</i> , 2020 , 22, 6478-6484	3.3	1
78o	The preparation and characterization of uniform nanoporous structure on glass. <i>Royal Society Open Science</i> , 2020 , 7, 192029	3.3	3
779	A novel three-dimensional architecture of Colle nanowires towards high-rate lithium and sodium storage. <i>Journal of Alloys and Compounds</i> , 2020 , 815, 152281	5.7	9
778	All-vacuum deposited and thermally stable perovskite solar cells with F4-TCNQ/CuPc hole transport layer. <i>Nanotechnology</i> , 2020 , 31, 065401	3.4	4
777	Effects of Antimony- and Tin-Doping on the Mechanical Propertiesof Czochralski Silicon: Revealing the Role of Electrical Activity of Antimony. <i>Silicon</i> , 2020 , 12, 1433-1439	2.4	2
776	Influence of temperature gradient at interface on defect multiplication in seed-assisted multicrystalline silicon. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 211, 110520	6.4	3
775	NIR Light Driven Terahertz Wave Modulator with a Large Modulation Depth Based on a Silicon-PEDOT:PSS-Perovskite Hybrid System. <i>Advanced Materials Technologies</i> , 2020 , 5, 1901090	6.8	5
774	Tuning Surface Structure of PdPb/Pt Pb Nanocrystals for Boosting the Methanol Oxidation Reaction. <i>Advanced Science</i> , 2019 , 6, 1902249	13.6	26
773	Building a Bridge from Papermaking to Solar Fuels. <i>Angewandte Chemie</i> , 2019 , 131, 14992-14996	3.6	2
772	Ultra-small Rh nanoparticles supported on WO3\(\mathbb{N}\) nanowires as efficient catalysts for visible-light-enhanced hydrogen evolution from ammonia borane. <i>Nanoscale Advances</i> , 2019 , 1, 3941-39	9 4 7 ¹	15
771	Plasmon-Coupled Fister Resonance Energy Transfer between Silicon Quantum Dots. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 23604-23609	3.8	8
770	Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. <i>Nanoscale</i> , 2019 , 11, 19086-19104	7.7	53
769	Controlling dislocation gliding and propagation in quasi-single crystalline silicon by using -oriented seeds. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 193, 214-218	6.4	12
768	Intermetallic Pd3Pb square nanoplates as highly efficient electrocatalysts for oxygen reduction reaction. <i>CrystEngComm</i> , 2019 , 21, 290-296	3.3	17

767	Designing functional ¶3 grain boundaries at seed junctions for high-quality cast quasi-single crystalline silicon. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 200, 109985	6.4	11	
766	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energy-Band Engineering. <i>Advanced Materials</i> , 2019 , 31, e1902543	24	46	
765	Negatively charged silicon nitride films for improved p-type silicon surface passivation by low-temperature rapid thermal annealing. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 345102	3	7	
764	Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity. <i>Science China Materials</i> , 2019 , 62, 1470-1478	7.1	15	
763	Effects of nitrogen doping on vacancy-oxygen complexes in neutron irradiated Czochralski silicon. <i>Materials Science in Semiconductor Processing</i> , 2019 , 98, 65-69	4.3	5	
762	Enhanced electrochemical properties of Cu3Si-embedded three-dimensional porous Si synthesized by one-pot synthesis. <i>Journal of Alloys and Compounds</i> , 2019 , 792, 341-347	5.7	11	
761	Recombination activity of sub-grain boundaries and dislocation arrays in quasi-single crystalline silicon. <i>Applied Physics Express</i> , 2019 , 12, 051012	2.4	3	
760	Building a Bridge from Papermaking to Solar Fuels. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14850-14854	16.4	13	
759	Intermetallic PdPb ultrathin nanoplate-constructed flowers with low-coordinated edge sites boost oxygen reduction performance. <i>Nanoscale</i> , 2019 , 11, 17301-17307	7.7	8	
758	Synthesis of Co/SnO2 core-shell nanowire arrays and their electrochemical performance as anodes of lithium-ion batteries. <i>Ionics</i> , 2019 , 25, 4651-4658	2.7	4	
757	Towards green antisolvent for efficient CH3NH3PbBr3 perovskite light emitting diodes: A comparison of toluene, chlorobenzene, and ethyl acetate. <i>Applied Physics Letters</i> , 2019 , 115, 033101	3.4	9	
756	Litchi-structural coreBhell Si@C for high-performance lithiumIbn battery anodes. <i>Ionics</i> , 2019 , 25, 5809-	5 <u>8</u> . † 8	5	
755	Silicon nanocrystals: unfading silicon materials for optoelectronics. <i>Materials Science and Engineering Reports</i> , 2019 , 138, 85-117	30.9	41	
754	Single Crystal Perovskite Microplate for High-Order Multiphoton Excitation. Small Methods, 2019, 3, 190	0 <u>03.</u> % 6	9	
753	A review on graphene-silicon Schottky junction interface. <i>Journal of Alloys and Compounds</i> , 2019 , 806, 63-70	5.7	13	
75 ²	Simulation to confirm the existence of distinct low-temperature regions in a Si melt using an insulating plate under the crucible bottom for the noncontact crucible method. <i>Journal of Crystal Growth</i> , 2019 , 524, 125160	1.6	2	
75 ¹	Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells. Journal of Materials Chemistry A, 2019 , 7, 19423-19429	13	19	
75°	Optimized phosphorus diffusion process and performance improvement of c-Si solar cell by eliminating SiP precipitates in the emitter. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 30, 13820-13825	2.1	2	

749	Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. <i>Nano Energy</i> , 2019 , 63, 1038	8 59 .1	51
748	Correlation of efficient luminescence with crystal structures of y-Er2Si2O7 and Er2Si2O7 in Er-doped silicon oxide films. <i>Journal of Materials Science</i> , 2019 , 54, 12668-12675	4.3	3
747	An Interlayer with Strong Pb-Cl Bond Delivers Ultraviolet-Filter-Free, Efficient, and Photostable Perovskite Solar Cells. <i>IScience</i> , 2019 , 21, 217-227	6.1	28
746	Investigation on the impact of hydrogen on the passivation of silicon surface states in clean and copper contaminated conditions. <i>AIP Advances</i> , 2019 , 9, 105102	1.5	5
745	Defect control based on constitutional supercooling effect in cast multicrystalline silicon: Boron-indium co-doping. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 203, 110189	6.4	3
744	Electroluminescence from light-emitting devices based on erbium-doped ZnO/n-Si heterostructures: Enhancement effect of fluorine co-doping. <i>Optics Express</i> , 2019 , 27, 30919-30930	3.3	9
743	Control of the formation and luminescent properties of polymorphic erbium silicates on silicon. <i>Optical Materials Express</i> , 2019 , 9, 1716	2.6	12
742	Efficient sensitized photoluminescence of Er silicate in silicon oxide films embedded with amorphous silicon clusters, part I: fabrication. <i>Optical Materials Express</i> , 2019 , 9, 4329	2.6	3
741	Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon. <i>Photonics Research</i> , 2019 , 7, 351	6	19
740	Nitrogen Impurity in Crystalline Silicon 2019 , 1-32		
74° 739	Nitrogen Impurity in Crystalline Silicon 2019 , 1-32 Growth of Crystalline Silicon for Solar Cells: Czochralski Si 2019 , 129-174		
			0
739	Growth of Crystalline Silicon for Solar Cells: Czochralski Si 2019 , 129-174	2.6	O
739 738	Growth of Crystalline Silicon for Solar Cells: Czochralski Si 2019 , 129-174 Nitrogen Impurity in Crystalline Silicon 2019 , 463-494 Efficient sensitized photoluminescence of Er silicate in silicon oxide films embedded with		0
739 738 737	Growth of Crystalline Silicon for Solar Cells: Czochralski Si 2019 , 129-174 Nitrogen Impurity in Crystalline Silicon 2019 , 463-494 Efficient sensitized photoluminescence of Er silicate in silicon oxide films embedded with amorphous silicon clusters, part II: photoluminescence. <i>Optical Materials Express</i> , 2019 , 9, 4339 CsPbBr quantum dots assisted crystallization of solution-processed perovskite films with		
739 738 737 736	Growth of Crystalline Silicon for Solar Cells: Czochralski Si 2019, 129-174 Nitrogen Impurity in Crystalline Silicon 2019, 463-494 Efficient sensitized photoluminescence of Er silicate in silicon oxide films embedded with amorphous silicon clusters, part II: photoluminescence. <i>Optical Materials Express</i> , 2019, 9, 4339 CsPbBr quantum dots assisted crystallization of solution-processed perovskite films with preferential orientation for high performance perovskite solar cells. <i>Nanotechnology</i> , 2019, 31, 085401 Coupling PtNi Ultrathin Nanowires with MXenes for Boosting Electrocatalytic Hydrogen Evolution	3.4	8
739 738 737 736	Growth of Crystalline Silicon for Solar Cells: Czochralski Si 2019 , 129-174 Nitrogen Impurity in Crystalline Silicon 2019 , 463-494 Efficient sensitized photoluminescence of Er silicate in silicon oxide films embedded with amorphous silicon clusters, part II: photoluminescence. <i>Optical Materials Express</i> , 2019 , 9, 4339 CsPbBr quantum dots assisted crystallization of solution-processed perovskite films with preferential orientation for high performance perovskite solar cells. <i>Nanotechnology</i> , 2019 , 31, 085401 Coupling PtNi Ultrathin Nanowires with MXenes for Boosting Electrocatalytic Hydrogen Evolution in Both Acidic and Alkaline Solutions. <i>Small</i> , 2019 , 15, e1805474	3.4	8 63

(2018-2019)

731	Structure and conductivity enhanced treble-shelled porous silicon as an anode for high-performance lithium-ion batteries <i>RSC Advances</i> , 2019 , 9, 35392-35400	3.7	4
730	Kinetic suppression of boronBxygen complexes in p-type Czochralski silicon by tin doping. <i>Applied Physics Express</i> , 2019 , 12, 011005	2.4	
729	Light-soaking enhanced passivation of Al2O3 on crystalline silicon surface. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 191, 350-355	6.4	4
728	Unidirectional light scattering by upflown Janus dimers composed of gold nanospheres and silicon nanorods. <i>Optics Communications</i> , 2019 , 435, 362-366	2	5
727	Revisiting the effects of carbon-doping at 1017 cmB level on dislocation behavior of Czochralski silicon: from room temperature to elevated temperatures. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 3114-3123	2.1	3
726	Effects of n-butyl amine incorporation on the performance of perovskite light emitting diodes. <i>Nanotechnology</i> , 2019 , 30, 105703	3.4	9
7 2 5	Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles. <i>Nature Communications</i> , 2018 , 9, 1011	17.4	64
724	A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5566-5573	13	31
723	Performance Improvement of Graphene/Silicon Photodetectors Using High Work Function Metal Nanoparticles with Plasma Effect. <i>Advanced Optical Materials</i> , 2018 , 6, 1701243	8.1	16
722	Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes. <i>Nanoscale</i> , 2018 , 10, 5626-5633	7.7	27
721	Wetting Behavior of Metal-Catalyzed Chemical Vapor Deposition-Grown One-Dimensional Cubic-SiC Nanostructures. <i>Langmuir</i> , 2018 , 34, 5214-5224	4	9
720	Design and Photovoltaic Properties of Graphene/Silicon Solar Cell. <i>Journal of Electronic Materials</i> , 2018 , 47, 5025-5032	1.9	4
719	Al2O3-Interlayer-Enhanced Performance of All-Inorganic Silicon-Quantum-Dot Near-Infrared Light-Emitting Diodes. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 577-583	2.9	12
718	Effects of oxygen related thermal donors on the performance of silicon heterojunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 179, 17-21	6.4	11
717	Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands. <i>ACS Applied Materials & Documents and Phenylpropyl ACS Applied Materials & Documents and Phenylpropyl ACS Applied Materials & Documents and Phenylpropyl Documents a</i>	9.5	51
716	Trap Assisted Bulk Silicon Photodetector with High Photoconductive Gain, Low Noise, and Fast Response by Ag Hyperdoping. <i>Advanced Optical Materials</i> , 2018 , 6, 1700638	8.1	49
715	Growth and ripening of oxygen precipitation in neutron-irradiated Czochralski silicon. <i>Materials Science in Semiconductor Processing</i> , 2018 , 74, 369-374	4.3	7
714	Multicrystalline silicon assisted by polycrystalline silicon slabs as seeds. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 179, 312-318	6.4	12

713	Multimetallic AuPd@Pd@Pt core-interlayer-shell icosahedral electrocatalysts for highly efficient oxygen reduction reaction. <i>Science Bulletin</i> , 2018 , 63, 494-501	10.6	26
712	Defect-Related Electroluminescence in the 1.2🛽.7 h Range from Boron-Implanted Silicon at Room Temperature. <i>Journal of Electronic Materials</i> , 2018 , 47, 4970-4974	1.9	
711	Detailed study of SiOxNy:H/Si interface properties for high quality surface passivation of crystalline silicon. <i>Superlattices and Microstructures</i> , 2018 , 113, 13-19	2.8	3
710	Multicrystalline silicon crystal assisted by silicon flakes as seeds. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 174, 202-205	6.4	25
709	Impact of Carbon Codoping on Generation and Dissociation of Boron Dxygen Defects in Czochralski Silicon. <i>Journal of Electronic Materials</i> , 2018 , 47, 5092-5098	1.9	2
708	Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers. <i>AIP Advances</i> , 2018 , 8, 045301	1.5	5
707	Light-emitting diodes based on colloidal silicon quantum dots. <i>Journal of Semiconductors</i> , 2018 , 39, 061	008	13
706	Fabrication of stabilized and dispersive copper nanowires ink. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 14989-14994	2.1	1
705	An Innovative Light Trapping Structure Fabrication Method on Diamond-Wire-Sawing Multi-Crystalline Silicon Wafers. <i>ChemistrySelect</i> , 2018 , 3, 7561-7564	1.8	2
704	Wet-chemical synthesized MCMB@Si@C microspheres for high-performance lithium-ion battery anodes. <i>Chemical Communications</i> , 2018 , 54, 9466-9469	5.8	19
703	Effects of Iron Contamination and Hydrogen Passivation on the Electrical Properties of Oxygen Precipitates in CZ-Si. <i>Journal of Electronic Materials</i> , 2018 , 47, 5039-5044	1.9	2
702	Controllable Nitrogen Doping in Multicrystalline Silicon by Casting Under Low Cost Ambient Nitrogen. <i>Silicon</i> , 2018 , 10, 1717-1722	2.4	4
701	Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. <i>Nano Energy</i> , 2018 , 52, 422-430	17.1	97
700	CHNHPbBr Quantum Dot-Induced Nucleation for High Performance Perovskite Light-Emitting Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 22320-22328	9.5	26
699	Tailoring the Edge Sites of 2D Pd Nanostructures with Different Fractal Dimensions for Enhanced Electrocatalytic Performance. <i>Advanced Science</i> , 2018 , 5, 1800430	13.6	25
698	High and Fast Response of a GrapheneBilicon Photodetector Coupled with 2D Fractal Platinum Nanoparticles. <i>Advanced Optical Materials</i> , 2018 , 6, 1700793	8.1	22
697	Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport. <i>Nanotechnology</i> , 2018 , 29, 065401	3.4	23
696	Electronic and thermoelectric properties of atomically thin CSi/C and CGe/C superlattices. <i>Nanotechnology</i> , 2018 , 29, 045402	3.4	4

695	The devisable reflection-enhanced lumpy silver particle and its application in thin film amorphous silicon solar cell. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 3153-3159	2.1	3
694	Rapid fabrication of porous silicon/carbon microtube composites as anode materials for lithium-ion batteries <i>RSC Advances</i> , 2018 , 8, 41101-41108	3.7	5
693	An inverted planar solar cell with 13% efficiency and a sensitive visible light detector based on orientation regulated 2D perovskites. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24633-24640	13	26
692	Wetting behaviors and applications of metal-catalyzed CVD grown graphene. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22437-22464	13	17
691	Enhanced oxygen reduction activity of Pt shells on PdCu truncated octahedra with different compositions <i>RSC Advances</i> , 2018 , 8, 34853-34859	3.7	1
690	Progress of GrapheneBilicon Heterojunction Photovoltaic Devices. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801520	4.6	12
689	Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates. <i>Advanced Science</i> , 2018 , 5, 1800050	13.6	41
688	Electroluminescent synaptic devices with logic functions. <i>Nano Energy</i> , 2018 , 54, 383-389	17.1	51
687	Effect of Small-Angle Grain Boundary on the Mechanical Properties in Direct Silicon Bonded Wafer. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1800118	1.6	1
686	Facile synthesis of Pd@Ru nanoplates with controlled thickness as efficient catalysts for hydrogen evolution reaction. <i>CrystEngComm</i> , 2018 , 20, 4230-4236	3.3	15
685	Formation, Stability, Geometry and Band Structure of Organically Surface-Modified Germanane. Journal of Materials Science and Technology, 2017 , 33, 59-64	9.1	11
684	Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells. <i>Nano Energy</i> , 2017 , 32, 225-231	17.1	28
683	Intermetallic Nanocrystals: Syntheses and Catalytic Applications. <i>Advanced Materials</i> , 2017 , 29, 1605997	24	246
682	One-Pot Fast Synthesis of Leaf-Like CuO Nanostructures and CuO/Ag Microspheres with Photocatalytic Application. <i>Nano</i> , 2017 , 12, 1750035	1.1	8
681	Density functional theory study on the B doping and B/P codoping of Si nanocrystals embedded in SiO2. <i>Physical Review B</i> , 2017 , 95,	3.3	20
68o	Porous Si@C coaxial nanotubes: layer-by-layer assembly on ZnO nanorod templates and application to lithium-ion batteries. <i>CrystEngComm</i> , 2017 , 19, 1220-1229	3.3	13
679	Illumination-Induced Hole Doping for Performance Improvement of Graphene/n-Silicon Solar Cells with P3HT Interlayer. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600516	6.4	15
678	PdCu alloy nanodendrites with tunable composition as highly active electrocatalysts for methanol oxidation. <i>RSC Advances</i> , 2017 , 7, 5800-5806	3.7	16

677	Silicon-Quantum-Dot Light-Emitting Diodes With Interlayer-Enhanced Hole Transport. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-10	1.8	21
676	Oxygen Reduction Reaction: Tuning Surface Structure and Strain in Pd P t CoreBhell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction (Small 7/2017). <i>Small</i> , 2017 , 13,	11	2
675	Inhomogeneous composition distribution in monolayer transition metal dichalcogenide alloys. <i>Materials Research Express</i> , 2017 , 4, 045004	1.7	3
674	Zn2GeO4@C CoreBhell Nanorods as Highly Reversible Anode Materials for Lithium-Ion Batteries. <i>Energy Technology</i> , 2017 , 5, 1656-1662	3.5	8
673	Self-Organized Fullerene Interfacial Layer for Efficient and Low-Temperature Processed Planar Perovskite Solar Cells with High UV-Light Stability. <i>Advanced Science</i> , 2017 , 4, 1700018	13.6	42
672	Electronic and magnetic properties of graphene, silicene and germanene with varying vacancy concentration. <i>AIP Advances</i> , 2017 , 7, 045308	1.5	38
671	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	144
670	A critical SiO layer on Si porous structures to construct highly-reversible anode materials for lithium-ion batteries. <i>Chemical Communications</i> , 2017 , 53, 6101-6104	5.8	33
669	Sample thickness effect of thermal vibration correction within X-ray dynamical theory for germanium-doped silicon. <i>Journal of Applied Physics</i> , 2017 , 121, 125704	2.5	3
668	Surface plasmon enhanced luminescence from organic-inorganic hybrid perovskites. <i>Applied Physics Letters</i> , 2017 , 110, 233113	3.4	20
667	Formation kinetics and mechanism of metastable vacancy-dioxygen complex in neutron irradiated Czochralski silicon. <i>Superlattices and Microstructures</i> , 2017 , 107, 91-96	2.8	4
666	Enhanced optoelectronic quality of perovskite films with excess CHNHI for high-efficiency solar cells in ambient air. <i>Nanotechnology</i> , 2017 , 28, 205401	3.4	15
665	Size-dependent magnetic properties of branchlike nickel oxide nanocrystals. AIP Advances, 2017, 7, 015	50 <u>2</u> §	21
664	Thermal history effect on the nucleation of oxygen precipitates in germanium doped Cz-silicon studied by high-energy X-ray diffraction. <i>Journal of Crystal Growth</i> , 2017 , 479, 46-51	1.6	1
663	Size-controlled synthesis of Au nanorings on Pd ultrathin nanoplates as efficient catalysts for hydrogenation. <i>CrystEngComm</i> , 2017 , 19, 6588-6593	3.3	3
662	Electroluminescence from silicon-based light-emitting devices with erbium-doped TiO2 films annealed at different temperatures. <i>Journal of Applied Physics</i> , 2017 , 122, 163106	2.5	11
661	Characterization of silicon surface states at clean and copper contaminated condition via transient capacitance measurement. <i>Applied Physics Letters</i> , 2017 , 111, 152103	3.4	5
660	Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework. <i>Journal of Applied Physics</i> , 2017 , 122, 113103	2.5	7

(2017-2017)

659	Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials. <i>Electrochimica Acta</i> , 2017 , 252, 438-445	6.7	28
658	Enhanced Electronic Properties of SnO via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. <i>ACS Nano</i> , 2017 , 11, 9176-9182	16.7	224
657	Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. <i>ACS Nano</i> , 2017 , 11, 9854-9862	16.7	209
656	CoreShell and alloy integrating PdAu bimetallic nanoplates on reduced graphene oxide for efficient and stable hydrogen evolution catalysts. <i>RSC Advances</i> , 2017 , 7, 43373-43379	3.7	7
655	Simple synthesis of SiGe@C porous microparticles as high-rate anode materials for lithium-ion batteries. <i>RSC Advances</i> , 2017 , 7, 33837-33842	3.7	15
654	Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer. <i>Nano Energy</i> , 2017 , 40, 345-351	17.1	78
653	Effect of germanium doping on the formation kinetics of vacancy-dioxygen complexes in high dose neutron irradiated crystalline silicon. <i>Journal of Applied Physics</i> , 2017 , 122, 095704	2.5	4
652	Multistage Transformation and Lattice Fluctuation at AgCl-Ag Interface. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5853-5860	6.4	3
651	Density functional theory study on the boron and phosphorus doping of germanium quantum dots. <i>RSC Advances</i> , 2017 , 7, 50935-50941	3.7	O
650	Strain-induced Stranski-Krastanov growth of Pd@Pt core-shell hexapods and octapods as electrocatalysts for methanol oxidation. <i>Nanoscale</i> , 2017 , 9, 11077-11084	7.7	35
649	Grain boundary engineering of high performance multicrystalline silicon: Control of iron contamination at the ingot edge. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 171, 131-135	6.4	12
648	Influence of vertical temperature gradients on wafer quality and cell efficiency of Seed-assisted high-performance multi-crystalline silicon. <i>Journal of Crystal Growth</i> , 2017 , 467, 65-70	1.6	6
647	Tuning Surface Structure and Strain in Pd-Pt Core-Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction. <i>Small</i> , 2017 , 13, 1603423	11	76
646	An industrial solution to light-induced degradation of crystalline silicon solar cells. <i>Frontiers in Energy</i> , 2017 , 11, 67-71	2.6	10
645	Cobalt Oxide@Tin Oxide@Silver CoreBhell Nanowire Arrays as Electrodes for Lithium-Ion Batteries. <i>Energy Technology</i> , 2017 , 5, 277-282	3.5	3
644	Carbon effect on the survival of vacancies in Czochralski silicon during rapid thermal anneal. <i>Journal of Applied Physics</i> , 2017 , 122, 045705	2.5	1
643	Determination of the Boron and Phosphorus Ionization Energies in Compensated Silicon by Temperature-Dependent Luminescence. <i>Silicon</i> , 2017 , 9, 147-151	2.4	6
642	Growth of Crystalline Silicon for Solar Cells: Czochralski Si 2017 , 1-45		

641	Improved performance and air stability of planar perovskite solar cells via interfacial engineering using a fullerene amine interlayer. <i>Nano Energy</i> , 2016 , 28, 330-337	17.1	65
640	Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells. <i>Nano Energy</i> , 2016 , 28, 12-18	17.1	55
639	Room-temperature processed, air-stable and highly efficient graphene/silicon solar cells with an organic interlayer. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11284-11291	13	13
638	Enhanced performance and light soaking stability of planar perovskite solar cells using an amine-based fullerene interfacial modifier. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18509-18515	13	57
637	Single-crystalline Pd square nanoplates enclosed by {100} facets on reduced graphene oxide for formic acid electro-oxidation. <i>Chemical Communications</i> , 2016 , 52, 14204-14207	5.8	23
636	Enhanced lithium storage capabilities of NiO@Si coreBhell nanowall arrays by voltage-control technique and their use as anode materials for lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 109649-109	9 <i>65</i> 6	6
635	Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film. <i>Journal of Applied Physics</i> , 2016 , 119, 203106	2.5	8
634	Graphene Coupled with Silicon Quantum Dots for High-Performance Bulk-Silicon-Based Schottky-Junction Photodetectors. <i>Advanced Materials</i> , 2016 , 28, 4912-9	24	163
633	Facile synthesis of Ru-decorated Pt cubes and icosahedra as highly active electrocatalysts for methanol oxidation. <i>Nanoscale</i> , 2016 , 8, 12812-8	7.7	32
632	Self-generation of a quasi pli junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10558-105	563	17
632 631	Self-generation of a quasi pli junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10558-105 Impact of germanium co-doping on oxygen precipitation in heavily boron-doped Czochralski silicon. <i>Superlattices and Microstructures</i> , 2016 , 99, 35-40	2.8	17 3
	solar cells using a transition metal oxide interlayer. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10558-105 Impact of germanium co-doping on oxygen precipitation in heavily boron-doped Czochralski silicon.		
631	solar cells using a transition metal oxide interlayer. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10558-105 Impact of germanium co-doping on oxygen precipitation in heavily boron-doped Czochralski silicon. <i>Superlattices and Microstructures</i> , 2016 , 99, 35-40 Size-Dependent Structures and Optical Absorption of Boron-Hyperdoped Silicon Nanocrystals.	2.8	3
631 630	solar cells using a transition metal oxide interlayer. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10558-1058. Impact of germanium co-doping on oxygen precipitation in heavily boron-doped Czochralski silicon. <i>Superlattices and Microstructures</i> , 2016 , 99, 35-40 Size-Dependent Structures and Optical Absorption of Boron-Hyperdoped Silicon Nanocrystals. <i>Advanced Optical Materials</i> , 2016 , 4, 700-707 Interface engineering of Graphene-Silicon heterojunction solar cells. <i>Superlattices and</i>	2.8	3 49
631 630 629	Impact of germanium co-doping on oxygen precipitation in heavily boron-doped Czochralski silicon. Superlattices and Microstructures, 2016, 99, 35-40 Size-Dependent Structures and Optical Absorption of Boron-Hyperdoped Silicon Nanocrystals. Advanced Optical Materials, 2016, 4, 700-707 Interface engineering of Graphene-Silicon heterojunction solar cells. Superlattices and Microstructures, 2016, 99, 3-12 Defect-related electroluminescence from metal-oxide-semiconductor devices with ZrO2 films on	2.8	3497
631 630 629 628	Impact of germanium co-doping on oxygen precipitation in heavily boron-doped Czochralski silicon. Superlattices and Microstructures, 2016, 99, 35-40 Size-Dependent Structures and Optical Absorption of Boron-Hyperdoped Silicon Nanocrystals. Advanced Optical Materials, 2016, 4, 700-707 Interface engineering of Graphene-Silicon heterojunction solar cells. Superlattices and Microstructures, 2016, 99, 3-12 Defect-related electroluminescence from metal-oxide-semiconductor devices with ZrO2 films on silicon. Superlattices and Microstructures, 2016, 99, 186-191 Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong	2.8 8.1 2.8	34972
631 630 629 628	Impact of germanium co-doping on oxygen precipitation in heavily boron-doped Czochralski silicon. Superlattices and Microstructures, 2016, 99, 35-40 Size-Dependent Structures and Optical Absorption of Boron-Hyperdoped Silicon Nanocrystals. Advanced Optical Materials, 2016, 4, 700-707 Interface engineering of Graphene-Silicon heterojunction solar cells. Superlattices and Microstructures, 2016, 99, 3-12 Defect-related electroluminescence from metal-oxide-semiconductor devices with ZrO2 films on silicon. Superlattices and Microstructures, 2016, 99, 186-191 Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime. ACS Nano, 2016, 10, 4154-63 Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their	2.8 8.1 2.8 2.8 16.7	3497245

(2016-2016)

623	Structures, Oxidation, and Charge Transport of Phosphorus-Doped Germanium Nanocrystals. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 271-278	3.1	19
622	Synthesis of colloidal NiO nanocrystals by a hot-injection approach with a protecting ligand. <i>Crystal Research and Technology</i> , 2016 , 51, 313-317	1.3	6
621	Epitaxial Growth of Multimetallic Pd@PtM (M = Ni, Rh, Ru) Core-Shell Nanoplates Realized by in Situ-Produced CO from Interfacial Catalytic Reactions. <i>Nano Letters</i> , 2016 , 16, 7999-8004	11.5	8o
620	Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 34612-34619	9.5	21
619	Green electroluminescence from Tb4O7 films on silicon: Impact excitation of Tb3+ ions by hot carriers. <i>Applied Physics Letters</i> , 2016 , 108, 051113	3.4	9
618	Electroluminescence from light-emitting devices with erbium-doped TiO2 films: Enhancement effect of yttrium codoping. <i>Journal of Applied Physics</i> , 2016 , 120, 163104	2.5	11
617	Silicon Nanocrystals: Size-Dependent Structures and Optical Absorption of Boron-Hyperdoped Silicon Nanocrystals (Advanced Optical Materials 5/2016). <i>Advanced Optical Materials</i> , 2016 , 4, 646-646	8.1	2
616	Silicon-nanocrystal-incorporated ternary hybrid solar cells. <i>Nano Energy</i> , 2016 , 26, 305-312	17.1	31
615	Low temperature iron gettering by grown-in defects in p-type Czochralski silicon. <i>Superlattices and Microstructures</i> , 2016 , 99, 192-196	2.8	3
614	Aluminum-doped crystalline silicon and its photovoltaic application. <i>Superlattices and Microstructures</i> , 2016 , 99, 158-164	2.8	6
613	Impact of carbon co-doping on the performance of crystalline silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 154, 94-98	6.4	5
612	Facile synthesis of PtCu3 alloy hexapods and hollow nanoframes as highly active electrocatalysts for methanol oxidation. <i>CrystEngComm</i> , 2016 , 18, 7823-7830	3.3	13
611	Cu-Li2O@Si core-shell nanowall arrays: Facile voltage-controlled synthesis and enhanced lithium-storage capabilities. <i>Journal of Alloys and Compounds</i> , 2016 , 689, 56-62	5.7	2
610	Formation, Structures and Electronic Properties of Silicene Oxides on Ag(111). <i>Journal of Materials Science and Technology</i> , 2016 ,	9.1	7
609	Rational design of three-dimensional macroporous silicon as high performance Li-ion battery anodes with long cycle life. <i>Journal of Power Sources</i> , 2016 , 331, 76-81	8.9	47
608	Cobalt OxideII in CoreII hell Nanowire Arrays as High-Performance Electrodes for Lithium-Ion Batteries. <i>Energy Technology</i> , 2016 , 4, 1435-1439	3.5	1
607	Ambient Engineering for High-Performance Organic-Inorganic Perovskite Hybrid Solar Cells. <i>ACS Applied Materials & Description (Materials & Description of the Materials & Description of </i>	9.5	24
606	Highly Pure and Luminescent Graphene Quantum Dots on Silicon Directly Grown by Chemical Vapor Deposition. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 8-14	3.1	16

605	Optimum Quantum Yield of the Light Emission from 2 to 10 nm Hydrosilylated Silicon Quantum Dots. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 44-52	3.1	65
604	Graphene Quantum Dots: Highly Pure and Luminescent Graphene Quantum Dots on Silicon Directly Grown by Chemical Vapor Deposition (Part. Part. Syst. Charact. 1/2016). <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 2-2	3.1	1
603	Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. <i>CrystEngComm</i> , 2015 , 17, 1833-1838	3.3	63
602	Oxygen precipitation in 1020 cmB germanium-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2015 , 117, 025705	2.5	7
601	Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures. <i>ACS Nano</i> , 2015 , 9, 3307-13	16.7	69
600	Rapid thermal processing induced vacancy-oxygen complexes in Czochralski-grown Si1\(\mathbb{Q}\)Gex. Journal of Materials Science: Materials in Electronics, 2015, 26, 7666-7672	2.1	
599	Ge@C three-dimensional porous particles as high-performance anode materials of lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 63056-63062	3.7	7
598	13.7% Efficiency graphenegallium arsenide Schottky junction solar cells with a P3HT hole transport layer. <i>Nano Energy</i> , 2015 , 16, 91-98	17.1	31
597	High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer. <i>Nano Energy</i> , 2015 , 16, 54-61	17.1	36
596	Silver-nickel oxide core-shell nanoparticle array electrode with enhanced lithium-storage performance. <i>Electrochimica Acta</i> , 2015 , 174, 893-899	6.7	5
595	Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping. <i>Applied Physics Letters</i> , 2015 , 106, 102105	3.4	7
594	Photoelectric properties of reduced-graphene-oxide film and its photovoltaic application. <i>RSC Advances</i> , 2015 , 5, 39630-39634	3.7	3
593	SilverBickel oxide coreBhell nanoflower arrays as high-performance anode for lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 285, 131-136	8.9	12
592	Electrically pumped random lasing with an onset voltage of sub-3 V from ZnO-based light-emitting devices featuring nanometer-thick MoO3 interlayers. <i>Nanoscale</i> , 2015 , 7, 9164-8	7.7	6
591	Higher quality mono-like cast silicon with induced grain boundaries. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 140, 121-125	6.4	35
590	Density functional theory study on organically surface-modified silicene. <i>RSC Advances</i> , 2015 , 5, 33831-	3 3,8 37	19
589	Color-tunable electroluminescence from Eu-doped TiO(2)/p(+)-Si heterostructured devices: engineering of energy transfer. <i>Optics Express</i> , 2015 , 23, 2819-26	3.3	12
588	Epitaxial Growth of Twinned Au-Pt Core-Shell Star-Shaped Decahedra as Highly Durable Electrocatalysts. <i>Nano Letters</i> , 2015 , 15, 7808-15	11.5	168

(2015-2015)

587	Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon. <i>Applied Physics Letters</i> , 2015 , 106, 141102	3.4	14	
586	Freestanding doped silicon nanocrystals synthesized by plasma. <i>Journal Physics D: Applied Physics</i> , 2015 , 48, 314006	3	26	
585	Interface engineering and efficiency improvement of monolayer graphenelilicon solar cells by inserting an ultra-thin LiF interlayer. <i>RSC Advances</i> , 2015 , 5, 46480-46484	3.7	19	
584	Revealing the elemental-specific growth dynamics of Pttu multipods by scanning transmission electron microscopy and chemical mapping. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21284-21289	13	6	
583	Ultraviolet-visible electroluminescence from metal-oxide-semiconductor devices with CeO2 films on silicon. <i>AIP Advances</i> , 2015 , 5, 037107	1.5	7	
582	Density functional theory study on boron- and phosphorus-doped hydrogen-passivated silicene. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 4146-51	3.6	26	
581	Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 1265-72	3.6	5	
580	Kinetically-controlled growth of cubic and octahedral Rh-Pd alloy oxygen reduction electrocatalysts with high activity and durability. <i>Nanoscale</i> , 2015 , 7, 301-7	7.7	27	
579	High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer. <i>Scientific Reports</i> , 2015 , 5, 17371	4.9	49	
578	Multicolor and near-infrared electroluminescence from the light-emitting devices with rare-earth doped TiO2 films. <i>Applied Physics Letters</i> , 2015 , 107, 131103	3.4	23	
577	Room-Temperature Near-Infrared Electroluminescence from Boron-Diffused Silicon Pn-Junction Diodes. <i>Frontiers in Materials</i> , 2015 , 2,	4	1	
576	Ab-initio calculation study on the formation mechanism of boron-oxygen complexes in c-Si. <i>AIP Advances</i> , 2015 , 5, 077154	1.5	4	
575	Twinned silicon and germanium nanocrystals: Formation, stability and quantum confinement. <i>AIP Advances</i> , 2015 , 5, 037140	1.5	5	
574	Ultrathin Two-Dimensional Pd-Based Nanorings as Catalysts for Hydrogenation with High Activity and Stability. <i>Small</i> , 2015 , 11, 4745-52	11	56	
573	Boron- and Phosphorus-Hyperdoped Silicon Nanocrystals. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 213-221	3.1	57	
572	Investigating the Effect of Thermal Annealing Process on the Photovoltaic Performance of the Graphene-Silicon Solar Cell. <i>International Journal of Photoenergy</i> , 2015 , 2015, 1-6	2.1	1	
571	Effect of Dopant Compensation on the Behavior of Dissolved Iron and Iron-Boron Related Complexes in Silicon. <i>International Journal of Photoenergy</i> , 2015 , 2015, 1-6	2.1	1	
570	Firmly bonded graphenelilicon nanocomposites as high-performance anode materials for lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 46173-46180	3.7	17	

569	On the mechanism of carrier scattering at oxide precipitates in Czochralski silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 2589-2594	2.1	
568	The enhanced efficiency of graphene-silicon solar cells by electric field doping. <i>Nanoscale</i> , 2015 , 7, 7072	2 <i>-</i> 7. ₇	40
567	Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. <i>ACS Nano</i> , 2015 , 9, 378-86	16.7	110
566	Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2015 , 622, 966-972	5.7	51
565	An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts. <i>ACS Applied Materials & District Science</i> , 2015 , 7, 4135-41	9.5	55
564	Electrically pumped random lasing from hydrothermal ZnO films of large grains. <i>Applied Surface Science</i> , 2015 , 332, 620-624	6.7	14
563	Effects of dopants on the growth of oxidation-induced stacking faults in heavily doped n-type Czochralaki silicon. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2015 , 64, 096105	0.6	
562	Rare-Earth Doped ZnO Films: A Material Platform to Realize Multicolor and Near-Infrared Electroluminescence. <i>Advanced Optical Materials</i> , 2014 , 2, 240-244	8.1	47
561	On the low carrier lifetime edge zone in multicrystalline silicon ingots. <i>Journal of Applied Physics</i> , 2014 , 115, 012007	2.5	5
560	Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition. <i>Electrochimica Acta</i> , 2014 , 130, 279-285	6.7	12
559	Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory. <i>Physical Review B</i> , 2014 , 89,	3.3	33
558	Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 128, 427-434	6.4	44
557	Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7727-7733	13	124
556	In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. <i>Chemical Communications</i> , 2014 , 50, 9447-50	5.8	38
555	Facile synthesis of high-quality Pt nanostructures with a controlled aspect ratio for methanol electro-oxidation. <i>CrystEngComm</i> , 2014 , 16, 8340-8343	3.3	11
554	Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16877-16883	13	74
553	Large-scale synthesis of AgBi coreBhell nanowall arrays as high-performance anode materials of Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13949-13954	13	30
552	Morphology and composition controlled synthesis of flower-like silver nanostructures. <i>Nanoscale Research Letters</i> , 2014 , 9, 302	5	22

551	Room temperature ferromagnetism of amorphous MgO films prepared by pulsed laser deposition. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 115, 997-1001	2.6	17
550	Enhanced internal gettering in n/n+ epitaxial silicon wafer: coaction of nitrogen impurity and vacancy on oxygen precipitation in substrate. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 3486-3491	2.1	1
549	Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors. Journal of the American Chemical Society, 2014 , 136, 5527-30	16.4	279
548	Facile synthesis of Pd P t alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. <i>CrystEngComm</i> , 2014 , 16, 2411-2416	3.3	58
547	Germanium-doped crystalline silicon: Effects of germanium doping on boron-related defects. Journal of Crystal Growth, 2014 , 401, 141-145	1.6	9
546	Density Functional Theory Study on the Oxidation of Hydrosilylated Silicon Nanocrystals. <i>Journal of Materials Science and Technology</i> , 2014 , 30, 639-643	9.1	6
545	Improved cyclic stability of Mg2Si by direct carbon coating as anode materials for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2014 , 587, 807-811	5.7	19
544	In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. <i>Nano Letters</i> , 2014 , 14, 3761-5	11.5	100
543	Facile synthesis of Rh-Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction. <i>Nanoscale</i> , 2014 , 6, 7012-8	7.7	47
542	Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. <i>Chemical Communications</i> , 2014 , 50, 560-2	5.8	126
541	Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals. <i>AIP Advances</i> , 2014 , 4, 127108	1.5	5
540	Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals. <i>Journal of Applied Physics</i> , 2014 , 116, 194304	2.5	8
539	Evolution of the sensitized Er(3+) emission by silicon nanoclusters and luminescence centers in silicon-rich silica. <i>Nanoscale Research Letters</i> , 2014 , 9, 456	5	5
538	Temperature dependence of sensitized Er(3+) luminescence in silicon-rich oxynitride films. <i>Nanoscale Research Letters</i> , 2014 , 9, 489	5	4
537	Enhanced broadband light absorption in silicon film by large-size lumpy silver particles. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 117, 573-577	2.6	3
536	Voltage-controlled synthesis of Culli2O@Si corelhell nanorod arrays as high-performance anodes for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20510-20514	13	23
535	Structural and luminescent properties of electron-irradiated silicon 2014,		1
534	Sensitization of Er3+ ions in silicon rich oxynitride films: effect of thermal treatments. <i>Optics Express</i> , 2014 , 22, 13022-8	3.3	8

533	Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding. <i>Applied Physics Letters</i> , 2014 , 104, 032102	3.4	2
532	Visible and near-infrared electroluminescence from TiO2/p+-Si heterostructured device. <i>AIP Advances</i> , 2014 , 4, 047109	1.5	2
531	Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20494-20499	13	54
530	Generation kinetics of boron-oxygen complexes in p-type compensated c-Si. <i>Applied Physics Letters</i> , 2014 , 104, 102108	3.4	3
529	Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p+-Si heterostructures. <i>Applied Physics Letters</i> , 2014 , 104, 201109	3.4	8
528	Tunable surface plasmon resonance frequencies of monodisperse indium tin oxide nanoparticles by controlling composition, size, and morphology. <i>Nanoscale Research Letters</i> , 2014 , 9, 547	5	27
527	Improvement of conversion efficiency of multicrystalline silicon solar cells by incorporating reactive ion etching texturing. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 127, 21-26	6.4	41
526	Three-dimensionally porous Fe3O4 as high-performance anode materials for lithiumIbn batteries. Journal of Power Sources, 2014 , 246, 198-203	8.9	61
525	Water-Dispersible Silicon-Quantum-Dot-Containing Micelles Self-Assembled from an Amphiphilic Polymer. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 751-756	3.1	30
524	Towards thinner and low bowing silicon solar cells: form the boron and aluminum co-doped back surface field with thinner metallization film. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 456-461	6.8	11
523	Phosphorus diffusion gettering of substitutional metal contaminants at a small-angle grain boundary in n-type silicon: The case of gold. <i>Journal of Crystal Growth</i> , 2013 , 380, 51-54	1.6	2
522	Large-scale synthesis and application of SnS2graphene nanocomposites as anode materials for lithium-ion batteries with enhanced cyclic performance and reversible capacity. <i>Journal of Alloys and Compounds</i> , 2013 , 580, 457-464	5.7	45
521	Electrochemical synthesis of SnCo alloy shells on orderly rod-shaped Cu current collectors as anode materials for lithium-ion batteries with enhanced performance. <i>Journal of Alloys and Compounds</i> , 2013 , 570, 119-124	5.7	18
520	Effects of excess silicon on the 1540 nm Er3+ luminescence in silicon rich oxynitride films. <i>Applied Physics Letters</i> , 2013 , 103, 071101	3.4	10
519	Modulation effect of microstructures in silicon-rich oxide matrix on photoluminescence from silicon nanoclusters prepared by different fabrication techniques. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 113, 121-126	2.6	5
518	Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells. <i>Nanoscale Research Letters</i> , 2013 , 8, 225	5	21
517	The modulation on luminescence of Er3+-doped silicon-rich oxide films by the structure evolution of silicon nanoclusters. <i>Nanoscale Research Letters</i> , 2013 , 8, 34	5	5
516	First-Principles Study of Interstitial Boron and Oxygen Dimer Complex in Silicon. <i>Applied Physics Express</i> , 2013 , 6, 041301	2.4	9

515	Iron-boron pair dissociation in silicon under strong illumination. AIP Advances, 2013, 3, 082124	1.5	1
514	Density functional theory study of the impact of tin doping on oxygen diffusion in Czochralski silicon. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 2199-2203	1.6	3
513	Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films. <i>Nanoscale Research Letters</i> , 2013 , 8, 366	5	10
512	Light-emitting devices based on erbium-doped TiO2/p+-Si heterostructures: Engineering of electroluminescence via aluminum co-doping. <i>Applied Physics Letters</i> , 2013 , 102, 021108	3.4	10
511	Synthesis of NixSiyBiGe coreBhell nanowire arrays on Ni foam as a high-performance anode for Li-ion batteries. <i>RSC Advances</i> , 2013 , 3, 7713	3.7	21
510	Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 222, 32-37	8.9	70
509	Enhancement of room temperature dislocation-related photoluminescence of electron irradiated silicon. <i>Journal of Applied Physics</i> , 2013 , 113, 033518	2.5	13
508	Germanium-doped crystalline silicon: A new substrate for photovoltaic application. <i>Journal of Crystal Growth</i> , 2013 , 362, 140-144	1.6	5
507	Low-cost fabrication of Cu2ZnSnS4 thin films for solar cell absorber layers. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 548-552	2.1	14
506	Effect of scattering from localized surface plasmon resonance on improving the luminescence efficiency of silicon nitride light-emitting devices. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	
505	Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2337	13	102
504	SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2013 , 577, 564-568	5.7	22
503	Doping Silicon Wafers with Boron by Use of Silicon Paste. <i>Journal of Materials Science and Technology</i> , 2013 , 29, 652-654	9.1	10
502	Analysis of the photovoltaic properties of n-type compensated silicon solar cells with the Al-alloyed emitter. <i>Journal of Alloys and Compounds</i> , 2013 , 561, 28-32	5.7	4
501	Room temperature visible electroluminescence from SrTiO3/p+Bi heterostructure. <i>Scripta Materialia</i> , 2013 , 69, 748-751	5.6	2
500	Synthesis of SiGe-based three-dimensional nanoporous electrodes for high performance lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 229, 185-189	8.9	22
499	An etchant for delineation of flow pattern defects in heavily doped p-type silicon wafers. <i>Materials Science in Semiconductor Processing</i> , 2013 , 16, 893-898	4.3	3
498	Two-peak characteristic distribution of iron impurities at the bottom of cast quasi-single-crystalline silicon ingot. <i>Scripta Materialia</i> , 2013 , 68, 655-657	5.6	14

497	Surface modification of chlorine-passivated silicon nanocrystals. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 1815-20	3.6	25
496	Origin of room temperature ferromagnetism in MgO films. <i>Applied Physics Letters</i> , 2013 , 102, 072406	3.4	48
495	Effect of tin on point defects and oxygen precipitation in Czochralski silicon: Experimental and theoretical studies. <i>Journal of Applied Physics</i> , 2013 , 113, 093511	2.5	35
494	The location and doping effect of boron in Si nanocrystals embedded silicon oxide film. <i>Applied Physics Letters</i> , 2013 , 102, 123108	3.4	31
493	Layer-by-layer synthesis of Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries. <i>Nanoscale</i> , 2013 , 5, 4744-50	7.7	40
492	Evolution of electroluminescence from silicon nitride light-emitting devices via nanostructural silver. <i>Nanoscale</i> , 2013 , 5, 3435-40	7.7	11
491	Impurity engineering of Czochralski silicon. <i>Materials Science and Engineering Reports</i> , 2013 , 74, 1-33	30.9	40
490	Tailoring Effect of Enhanced Local Electric Field From Metal Nanoparticles on Electroluminescence of Silicon-Rich Silicon Nitride. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 4602504-	4 6 825	o [§]
489	Low-voltage driven ~1.54 th electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: Energy transfer from ZnO host to erbium ions. <i>Applied Physics Letters</i> , 2013 , 102, 181111	3.4	34
488	Electrically pumped random lasing in ZnO-based metal-insulator-semiconductor structured devices: Effect of ZnO film thickness. <i>Journal of Applied Physics</i> , 2013 , 113, 213103	2.5	2
487	Impact of rapid thermal processing on oxygen precipitation in heavily arsenic and antimony doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2013 , 113, 163510	2.5	13
486	Synthesis of nanoporous three-dimensional current collector for high-performance lithium-ion batteries. <i>RSC Advances</i> , 2013 , 3, 7543	3.7	9
485	Modulation of electrical characteristics at a Ni-contaminated silicon grain boundary by engineering the metal precipitates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 1828-1831	1.6	2
484	Study on permanent deactivation of the light-induced degradation in p-type compensated crystalline silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 117, 29-33	6.4	6
483	Experimental evidence of staggered oxygen dimers as a component of boron-oxygen complexes in silicon. <i>Applied Physics Letters</i> , 2013 , 102, 082107	3.4	19
482	Formation of nanostructured emitter for silicon solar cells using catalytic silver nanoparticles. <i>Applied Surface Science</i> , 2013 , 264, 621-624	6.7	28
481	Constructing Ag nanoparticles ingle wall carbon hybrid nanostructure to improve field emission properties. <i>Applied Surface Science</i> , 2013 , 265, 187-191	6.7	11
480	Electrically pumped random lasing from the light-emitting device based on two-fold-tandem SiO2/ZnO structure. <i>Applied Physics Letters</i> , 2013 , 102, 161112	3.4	4

(2012-2013)

479	Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films. <i>Journal of Applied Physics</i> , 2013 , 114, 133105	2.5	5
478	Light absorption enhancement of amorphous silicon film coupled with metal nanoshells. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 405	1.7	10
477	Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures. <i>Optics Express</i> , 2013 , 21, 846-54	3.3	3
476	Optimization of the electroluminescence from SiNx-based light-emitting devices by modulating the size and morphology of silver nanostructures. <i>Optics Express</i> , 2013 , 21, 1675-86	3.3	3
475	Size-dependent coupling between localized surface plasmons and excitons in silicon nitride matrix. <i>Optics Letters</i> , 2013 , 38, 2832-4	3	4
474	Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells. <i>Journal of Nanomaterials</i> , 2013 , 2013, 1-5	3.2	14
473	Scanning infrared microscopy study of thermal processing induced defects in low resistivity Si wafers. <i>Semiconductor Science and Technology</i> , 2013 , 28, 085013	1.8	4
472	Improving the Solar Cell Module Performance by a Uniform Porous Antireflection Layer on Low Iron Solar Glass. <i>Applied Physics Express</i> , 2013 , 6, 032301	2.4	4
471	Reduction of the efficiency droop in silicon nitride light-emitting devices by localized surface plasmons. <i>Applied Physics Letters</i> , 2013 , 102, 081108	3.4	3
470	Silicene oxides: formation, structures and electronic properties. <i>Scientific Reports</i> , 2013 , 3, 3507	4.9	60
469	Field emission performance enhancement of Au nanoparticles doped graphene emitters. <i>Applied Physics Letters</i> , 2013 , 103, 233105	3.4	22
468	Oxide precipitate nucleation at 300 °C in low resistivity n-type Czochralski Si. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2013 , 210, 2592-2599	1.6	3
467	Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd co-doped LaF3 as a multimodal imaging probe. <i>Journal of Colloid and Interface Science</i> , 2012 , 367, 61-6	9.3	21
466	Colloidal synthesis of monodisperse quaternary CuInSSe nanocrystals. <i>Materials Chemistry and Physics</i> , 2012 , 132, 865-869	4.4	7
465	Efficiency improvement of crystalline silicon solar cells with a back-surface field produced by boron and aluminum co-doping. <i>Scripta Materialia</i> , 2012 , 66, 394-397	5.6	19
464	CuBi1\(\mathbb{I}\)Gex core\(\mathbb{B}\)hell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. \(Journal of Power Sources, \mathbb{2012}, 208, 434-439\)	8.9	42
463	Defects in TiO2 films on p+-Si studied by positron annihilation spectroscopy. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2012 , 177, 625-628	3.1	1
462	Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation. <i>Optics Communications</i> , 2012 , 285, 1864-1867	2	5

461	Fabrication of TiO2 nanorod array/semiconductor nanocrystal hybrid structure for photovoltaic applications. <i>Solar Energy</i> , 2012 , 86, 1359-1365	6.8	21
460	Thin Czochralski silicon solar cells based on diamond wire sawing technology. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 98, 337-342	6.4	100
459	Effect of dopant compensation on the performance of Czochralski silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 101, 102-106	6.4	14
458	Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 101, 95-101	6.4	130
457	Controlled synthesis of luminescent CuInS2 nanocrystals and their optical properties. <i>Journal of Luminescence</i> , 2012 , 132, 313-317	3.8	16
456	Influence of defects and impurities on the deteriorated border region in multicrystalline silicon ingots. <i>Crystal Research and Technology</i> , 2012 , 47, 7-12	1.3	6
455	Shape and size controlled synthesis of CuInS2 particles in polyalcohol system used as printable inkur thin films. <i>Journal of Sol-Gel Science and Technology</i> , 2012 , 62, 87-91	2.3	3
454	Retarded oxygen diffusion in heavily phosphorus-doped Czochralski silicon: experiments and first-principles calculations. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 495802	1.8	1
453	Influence of the compensation level on the performance of p-type crystalline silicon solar cells: Theoretical calculations and experimental study. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 107, 263-2	2 / 14	8
45 ²	Density functional theory study on a 1.4 nm silicon nanocrystal coated with carbon. <i>RSC Advances</i> , 2012 , 2, 11227	3.7	11
451	Structure and magnetic properties of &Fe4N films grown on MgO-buffered Si (001). <i>Physica B: Condensed Matter</i> , 2012 , 407, 4783-4786	2.8	5
450	Anomalous Magnetization Behavior of Fe-N Films Deposited by Reactive Pulsed Laser Deposition. <i>IEEE Transactions on Magnetics</i> , 2012 , 48, 2899-2902	2	1
449	A chemical strategy to reinforce electrically pumped ultraviolet random lasing from ZnO films. Journal of Materials Chemistry, 2012 , 22, 16738		12
448	Cuttle corethell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1511-1515		97
447	Growth and photoelectrochemical properties of ordered CuInS2 nanorod arrays. <i>Chemical Communications</i> , 2012 , 48, 4746-8	5.8	16
446	CoO/NiSi(x) core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. <i>Nanoscale</i> , 2012 , 4, 991-6	7.7	48
445	Fluorine-Passivated Silicon Nanocrystals: Surface Chemistry versus Quantum Confinement. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5401-5406	3.8	35
444	Vertically ordered NiBi / Si nanorod arrays as anode materials for high-performance Li-ion batteries. <i>Nanoscale</i> , 2012 , 4, 5343-7	7.7	36

(2012-2012)

443	Nanostructured hybrid cobalt oxide/copper electrodes of lithium-ion batteries with reversible high-rate capabilities. <i>Journal of Alloys and Compounds</i> , 2012 , 521, 83-89	5.7	26
442	Large-scale synthesis of silicon arrays of nanowire on titanium substrate as high-performance anode of Li-ion batteries. <i>Journal of Alloys and Compounds</i> , 2012 , 526, 53-58	5.7	24
441	Effect of Ge doping on the kinetics of ironBoron pair association and dissociation in photovoltaic silicon. <i>Journal of Crystal Growth</i> , 2012 , 348, 20-24	1.6	4
440	Dislocation-induced variation of generation kinetics of boronBxygen complexes in silicon. <i>Journal of Crystal Growth</i> , 2012 , 359, 69-71	1.6	2
439	Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating. <i>Nanoscale Research Letters</i> , 2012 , 7, 306	5	20
438	The coupling between localized surface plasmons and excitons via Purcell effect. <i>Nanoscale Research Letters</i> , 2012 , 7, 669	5	6
437	First-Principles Study on the Surface Chemistry of 1.4 nm Silicon Nanocrystals: Case of Hydrosilylation. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 19434-19443	3.8	49
436	Enhancing the Efficiency of Multicrystalline Silicon Solar Cells by the Inkjet Printing of Silicon-Quantum-Dot Ink. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 21240-21243	3.8	92
435	Dislocation-related electroluminescence of silicon after electron irradiation. <i>Solid State Communications</i> , 2012 , 152, 1956-1959	1.6	7
434	Optically and electrically pumped random lasing from ZnO films annealed at different temperatures. <i>Optics Communications</i> , 2012 , 285, 5323-5326	2	5
433	Phase-controlled synthesis of nickel silicide nanostructures. <i>Materials Research Bulletin</i> , 2012 , 47, 3797-	-358103	16
432	Large-scale synthesis of water-soluble Na2SiF6 nanotubes with polyacrylic acid as a surfactant. <i>Materials Research Bulletin</i> , 2012 , 47, 3923-3926	5.1	5
431	Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film. <i>Applied Physics Letters</i> , 2012 , 100, 031113	3.4	21
430	One-dimensional hybrid nanostructures: synthesis via layer-by-layer assembly and applications. <i>Nanoscale</i> , 2012 , 4, 5517-26	7.7	20
429	Light-induced degradation in n-type Czochralski silicon by boron-doping and thermal donor compensation. <i>Journal of Applied Physics</i> , 2012 , 112, 084509	2.5	14
428	Crystal Growth of Indium-Doped Czochralski Silicon for Photovoltaic Application. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 105501	1.4	2
427	Synthesis of Co3O4@SnO2@C core-shell nanorods with superior reversible lithium-ion storage. <i>RSC Advances</i> , 2012 , 2, 9511	3.7	35
426	Quantitative Study of the Evolution of Oxygen and Vacancy Complexes in Czochralski Silicon. Applied Physics Express, 2012 , 5, 021302	2.4	6

425	Hydrogenation of interface states at a clean grain boundary in the direct silicon bonded wafer. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 990-993	1.6	1
424	Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities. <i>Nanoscale</i> , 2012 , 4, 4002-6	7.7	54
423	Study of sulphidation of Culh nanoparticle precursor films with an air-stable process. <i>Journal of Materials Science: Materials in Electronics</i> , 2012 , 23, 1263-1267	2.1	
422	Lightly boron and phosphorus co-doped silicon nanocrystals. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	14
421	Performance of Silicon Nanowire Solar Cells with Phosphorus-Diffused Emitters. <i>Journal of Nanomaterials</i> , 2012 , 2012, 1-6	3.2	4
420	Electrically tunable electroluminescence from SiN(x)-based light-emitting devices. <i>Optics Express</i> , 2012 , 20, 17359-66	3.3	14
419	Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons. <i>Optical Materials Express</i> , 2012 , 2, 872	2.6	10
418	Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios. <i>Optical Materials Express</i> , 2012 , 2, 1437	2.6	8
417	The origin of 0.78 eV line of the dislocation related luminescence in silicon. <i>Journal of Applied Physics</i> , 2012 , 112, 063528	2.5	2
416	Electrically pumped wavelength-tunable blue random lasing from CdZnO films on silicon. <i>Applied Physics Letters</i> , 2012 , 100, 231101	3.4	1
415	Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure. <i>Applied Physics Letters</i> , 2012 , 100, 031103	3.4	27
414	Role of Impurities in Solar Silicon 2012 , 79-125		6
413	Grown-in precipitates in heavily phosphorus-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2012 , 111, 033520	2.5	6
412	An Etchant for Delineation of Flow Pattern Defects in Heavily Doped n-type Silicon Wafers. <i>ECS Transactions</i> , 2012 , 44, 751-757	1	1
411	Influence of oxygen precipitation on copper precipitation in Czochralski silicon. <i>Journal of Applied Physics</i> , 2012 , 111, 094907	2.5	2
410	Large-scale synthesis of water-soluble nanowires as versatile templates for nanotubes. <i>Chemical Communications</i> , 2011 , 47, 1006-8	5.8	6
409	Optical absorption and emission of nitrogen-doped silicon nanocrystals. <i>Nanoscale</i> , 2011 , 3, 4584-8	7.7	10
408	CuBn CoreBhell Nanowire Arrays as Three-Dimensional Electrodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011 , 115, 23620-23624	3.8	49

(2011-2011)

407	Electrically pumped simultaneous ultraviolet and visible random laser actions from ZnO-CdO interdiffused film. <i>Applied Physics Letters</i> , 2011 , 99, 261111	3.4	4
406	Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1946-52	9.5	101
405	Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11302-11305	3.8	218
404	Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries. <i>Nanoscale</i> , 2011 , 3, 746-50	7.7	130
403	Fabrication of flower-like silver structures through anisotropic growth. <i>Langmuir</i> , 2011 , 27, 6211-7	4	74
402	Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. <i>ACS Nano</i> , 2011 , 5, 8212-22	16.7	223
401	Remarkable decrease in threshold for electrically pumped random ultraviolet lasing from ZnO film by incorporation of Zn2TiO4 nanoparticles. <i>Optics Express</i> , 2011 , 19, 8662-9	3.3	20
400	Optical properties of sputtered hexagonal CdZnO films with band gap energies from 1.8 to 3.3 eV. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 6599-6602	5.7	36
399	CobaltIron cyanide hollow cubes: Three-dimensional self-assembly and magnetic properties. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 8382-8386	5.7	11
398	Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6078-89	16.4	364
397	Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10422-5	16.4	102
396	First-Principles Study of 2.2 nm Silicon Nanocrystals Doped with Boron. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9838-9843	3.8	50
395	The effect of impurity-induced lattice strain and Fermi level position on low temperature oxygen diffusion in silicon. <i>Journal of Applied Physics</i> , 2011 , 109, 063532	2.5	20
394	Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 2941-2945	6.4	103
393	Effect of oxygen precipitation on the performance of Czochralski silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 3148-3151	6.4	47
392	Synthesis of Co2SnO4@C coreEhell nanostructures with reversible lithium storage. <i>Journal of Power Sources</i> , 2011 , 196, 10234-10239	8.9	58
391	Quantification of characteristic parameters for the dissociation kinetics of ironBoron pairs in Czochralski silicon. <i>Scripta Materialia</i> , 2011 , 64, 217-220	5.6	7
390	Hydrogen passivation of Fe-related deep energy levels at a direct silicon-bonded (110)/(100) grain boundary. <i>Scripta Materialia</i> , 2011 , 64, 653-656	5.6	1

389	Improvement in the mechanical performance of Czochralski silicon under indentation by germanium doping. <i>Scripta Materialia</i> , 2011 , 64, 832-835	5.6	10
388	Formation of shallow junctions in gallium and phosphorus compensated silicon for cell performance improvement. <i>Scripta Materialia</i> , 2011 , 65, 871-874	5.6	3
387	Layer-by-layer assembly synthesis of ZnO/SnO2 composite nanowire arrays as high-performance anode for lithium-ion batteries. <i>Materials Research Bulletin</i> , 2011 , 46, 2378-2384	5.1	33
386	Solvothermal synthesis of carbon-coated tin nanorods for superior reversible lithium ion storage. <i>Materials Research Bulletin</i> , 2011 , 46, 2278-2282	5.1	9
385	Size controllable synthesis of ultrafine silver particles through a one-step reaction. <i>Materials Letters</i> , 2011 , 65, 628-631	3.3	13
384	Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis. <i>Nanoscale Research Letters</i> , 2011 , 6, 374	5	29
383	Ni3Si2Bi nanowires on Ni foam as a high-performance anode of Li-ion batteries. <i>Electrochemistry Communications</i> , 2011 , 13, 1443-1446	5.1	33
382	An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 387, 17-22	5.1	54
381	Cu I h intermetallic compound inks for CuInS2 solar cells. <i>Journal of Materials Science: Materials in Electronics</i> , 2011 , 22, 1124-1129	2.1	9
3 80	Direct synthesis of indium nanoparticles and their application to prepare CuInS2 thin films and solar cells. <i>Journal of Sol-Gel Science and Technology</i> , 2011 , 58, 162-169	2.3	3
379	Flow pattern defects in germanium-doped Czochralski silicon crystals. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 104, 349-355	2.6	2
378	Immobilization of dislocations by oxygen precipitates in Czochralski silicon: Feasibility of precipitation strengthening mechanism. <i>Journal of Crystal Growth</i> , 2011 , 324, 93-97	1.6	9
377	Low-cost solar grade silicon purification process with AlBi system using a powder metallurgy technique. <i>Separation and Purification Technology</i> , 2011 , 77, 33-39	8.3	65
376	Synthesis of hexagonal structured wurtzite and chalcopyrite CuInS2 via a simple solution route. <i>Nanoscale Research Letters</i> , 2011 , 6, 562	5	31
375	Structural characterization of CuInS2 thin films from CuIh metal inks. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 2399-2405	1.6	6
374	Electron irradiation induced defects in germanium-doped Czochralski silicon substrates and diodes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 674-677		7
373	Characterization of a Czochralski grown silicon crystal doped with 1020 cm-3 germanium. <i>Crystal Research and Technology</i> , 2011 , 46, 10-13	1.3	4
372	Preparation of echinus-like SiO2@Ag structures with the aid of the HCP phase. <i>Chemical Communications</i> , 2011 , 47, 5169-71	5.8	28

(2011-2011)

371	Assembling CoSn3 nanoparticles on multiwalled carbon nanotubes with enhanced lithium storage properties. <i>Nanoscale</i> , 2011 , 3, 1798-801	7.7	39
370	Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. <i>Nano Letters</i> , 2011 , 11, 898-903	11.5	168
369	Modulation of atomic-layer-deposited Al2O3 film passivation of silicon surface by rapid thermal processing. <i>Applied Physics Letters</i> , 2011 , 99, 052103	3.4	23
368	Carbon Nanocapsules as Nanoreactors for Controllable Synthesis of Encapsulated Iron and Iron Oxides: Magnetic Properties and Reversible Lithium Storage. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 3612-3620	3.8	96
367	Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. <i>Inorganic Chemistry</i> , 2011 , 50, 3320-4	5.1	159
366	Theoretical Study of Chlorine for Silicon Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 12822	-1,2825	5 38
365	Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries. <i>ACS Applied Materials & District M</i>	9.5	139
364	Critical Role of Dopant Location for P-Doped Si Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 661-666	3.8	50
363	Surface plasmon enhanced light emission of silicon-rich silicon nitride: Dependence on metal island size. <i>Applied Surface Science</i> , 2011 , 257, 5591-5594	6.7	4
362	Investigation of nitrogen behaviors during Czochralski silicon crystal growth. <i>Journal of Crystal Growth</i> , 2011 , 318, 178-182	1.6	4
361	Effects of high temperature rapid thermal processing on oxygen precipitation in heavily arsenic-doped Czochralski silicon. <i>Journal of Crystal Growth</i> , 2011 , 318, 183-186	1.6	8
3 60	Improved fracture strength of multicrystalline silicon by germanium doping. <i>Journal of Crystal Growth</i> , 2011 , 318, 230-233	1.6	16
359	Germanium-doped Czochralski silicon for photovoltaic applications. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 2466-2470	6.4	22
358	Aluminum doped silicon carbide thin films prepared by hot-wire CVD: Influence of the substrate temperature on material properties. <i>Thin Solid Films</i> , 2011 , 519, 4516-4518	2.2	4
357	Development of microcrystalline silicon carbide window layers by hot-wire CVD and their applications in microcrystalline silicon thin film solar cells. <i>Thin Solid Films</i> , 2011 , 519, 4523-4526	2.2	11
356	The modulation of surface texture for single-crystalline Si solar cells using calibrated silver nanoparticles as a catalyst. <i>Nanotechnology</i> , 2011 , 22, 025703	3.4	9
355	Silicon nanocrystals doped with substitutional or interstitial manganese. <i>Applied Physics Letters</i> , 2011 , 99, 193108	3.4	8
354	Continuous wave spectroscopy of nonlinear dynamics of Si nanocrystals in a microdisk resonator. <i>Physical Review B</i> , 2011 , 84,	3.3	2

353	CdSe Quantum Dots Sensitized Mesoporous TiO2Solar Cells with CuSCN as Solid-State Electrolyte. Journal of Nanomaterials, 2011 , 2011, 1-5	3.2	4
352	Simple Synthesis of Flower-Likeln2S3Structures and Their Use as Templates to Prepare CuS Particles. <i>Journal of Nanomaterials</i> , 2011 , 2011, 1-5	3.2	5
351	One-Pot Synthesis of Biocompatible CdSe/CdS Quantum Dots and Their Applications as Fluorescent Biological Labels. <i>Nanoscale Research Letters</i> , 2011 , 6, 31	5	37
350	Oxygen Precipitate Nucleation in Heavily Antimony-Doped Czochralski Silicon. <i>ECS Transactions</i> , 2010 , 27, 1027-1033	1	2
349	On the assumed impact of germanium doping on void formation in Czochralski-grown silicon. <i>Journal of Applied Physics</i> , 2010 , 108, 123501	2.5	16
348	Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering. <i>Applied Physics Letters</i> , 2010 , 97, 251115	3.4	13
347	Effect of germanium on the kinetics of boron-oxygen defect generation and dissociation in Czochralski silicon. <i>Applied Physics Letters</i> , 2010 , 97, 162107	3.4	12
346	Effects of heavy phosphorus-doping on mechanical properties of Czochralski silicon. <i>Journal of Applied Physics</i> , 2010 , 107, 123503	2.5	17
345	Highly Conductive p-Type Silicon Carbon Alloys Deposited by Hot-Wire Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2010 , 49, 041303	1.4	11
344	Electrically pumped ultraviolet random lasing from heterostructures formed by bilayered MgZnO films on silicon. <i>Applied Physics Letters</i> , 2010 , 97, 061111	3.4	9
343	CNTs@SnO2@C Coaxial Nanocables with Highly Reversible Lithium Storage. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 22535-22538	3.8	132
342	Bonding of Oxygen at the Oxide/Nanocrystal Interface of Oxidized Silicon Nanocrystals: An Ab Initio Study. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8774-8781	3.8	39
341	Electrically pumped wavelength-tunable ultraviolet random lasing from Mg(x)Zn(1-x)O films on Si. <i>Optics Express</i> , 2010 , 18, 10668-73	3.3	16
340	Structure and luminescence evolution of annealed Europium-doped silicon oxides films. <i>Optics Express</i> , 2010 , 18, 27191-6	3.3	42
339	Influence of nickel precipitation on the formation of denuded zone in Czochralski silicon. <i>Journal of Alloys and Compounds</i> , 2010 , 502, 351-355	5.7	3
338	Chemical synthesis of Cu(In) metal inks to prepare CuInS2 thin films and solar cells. <i>Journal of Alloys and Compounds</i> , 2010 , 507, 317-321	5.7	14
337	Suppression of boronBxygen defects in p-type Czochralski silicon by germanium doping. <i>Applied Physics Letters</i> , 2010 , 97, 051903	3.4	22
336	Si60 fullerene-like cage passivated by F and Cl. <i>Molecular Simulation</i> , 2010 , 36, 493-495	2	3

335	Modulation of 1.5 fh dislocation-related luminescence emitted from a direct silicon bonded interface by external bias. <i>Applied Physics Letters</i> , 2010 , 96, 211120	3.4	4
334	Carbon nanotube-based magnetic-fluorescent nanohybrids as highly efficient contrast agents for multimodal cellular imaging. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9895		54
333	Electrical Transport Properties Through Nanoscale and Large-Area Contacts of ZnO/Si Diodes. <i>Current Nanoscience</i> , 2010 , 6, 219-225	1.4	4
332	Effect of vacancies on oxygen precipitation in germanium-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2010 , 107, 073518	2.5	7
331	Microcrystalline silicon thin film solar cells with microcrystalline silicon carbide window layers and silicon absorber layers both prepared by Hot-Wire CVD. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 61-63	2.5	6
330	Effect of iron contamination on grain boundary states at a direct silicon bonded (110)/(100) interface. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 350-352	2.5	3
329	Defect-Related White-Light Emission from ZnO in an n-Mg0.2Zn0.8O/n-ZnO/SiO x Heterostructure on n-Si. <i>Journal of Electronic Materials</i> , 2010 , 39, 652-655	1.9	4
328	Correlation Between Oxygen Precipitation and Extended Defects in Czochralski Silicon: Investigation by Means of Scanning Infrared Microscopy. <i>Journal of Electronic Materials</i> , 2010 , 39, 648-6	55 ¹ 1 ⁹	2
327	Growth of In2O3 Nanowires Catalyzed by Cu via a Solid-Liquid-Solid Mechanism. <i>Nanoscale Research Letters</i> , 2010 , 5, 898-903	5	9
326	Noninjection Synthesis of CdS and Alloyed CdSxSe1-xNanocrystals Without Nucleation Initiators. <i>Nanoscale Research Letters</i> , 2010 , 5, 966-71	5	20
325	Selective Synthesis of Fe2O3 and Fe3O4 Nanowires Via a Single Precursor: A General Method for Metal Oxide Nanowires. <i>Nanoscale Research Letters</i> , 2010 , 5, 1295-300	5	98
324	Functionalization of ZnO nanorods with EFe2O3 nanoparticles: Layer-by-layer synthesis, optical and magnetic properties. <i>Materials Chemistry and Physics</i> , 2010 , 124, 908-911	4.4	21
323	Effect of nickel contamination on grain boundary states at a direct silicon bonded (110)/(100) interface. <i>Scripta Materialia</i> , 2010 , 63, 1100-1103	5.6	3
322	Facile synthesis of five-fold twinned, starfish-like rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5296-300	16.4	92
321	Reflectivity of porous-pyramids structured silicon surface. <i>Applied Surface Science</i> , 2010 , 257, 472-475	6.7	25
320	Preparation of metal@silica core-shell particle films by interfacial self-assembly. <i>Journal of Colloid and Interface Science</i> , 2010 , 350, 58-62	9.3	22
319	Effect of oxygen precipitates on dislocation motion in Czochralski silicon. <i>Journal of Crystal Growth</i> , 2010 , 312, 169-173	1.6	11
318	Effect of rapid thermal annealing on photoluminescence and crystal structures of CdZnO films. Journal of Crystal Growth, 2010 , 312, 1908-1911	1.6	11

317	Phosphorus gettering of precipitated Cu in single crystalline silicon based on rapid thermal process. Journal of Crystal Growth, 2010 , 312, 3069-3074	1.6	3
316	Single step synthesis of CdSeS nanorods with chemical composition gradients. <i>Journal of Crystal Growth</i> , 2010 , 312, 3406-3409	1.6	7
315	Ultraviolet light emissions from N2 microplasma electrically induced by metal[hsulatorElemiconductor devices. <i>Journal of Luminescence</i> , 2010 , 130, 1073-1075	3.8	2
314	Fairly pure ultraviolet electroluminescence from p-Si-based SiOx/ZnO/SiOx double-barrier device. <i>Optics Communications</i> , 2010 , 283, 1359-1362	2	2
313	High temperature nucleation of oxygen precipitates in Germanium-doped Czochralski silicon. <i>Thin Solid Films</i> , 2010 , 518, 2334-2337	2.2	1
312	Bidirectional direct-current electroluminescence from i-MgxZn1NO/n-ZnO/SiOx double-barrier heterostructures on Si. <i>Applied Physics Letters</i> , 2009 , 94, 061110	3.4	18
311	Oxygen precipitation heterogeneously nucleating on silicon phosphide precipitates in heavily phosphorus-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2009 , 105, 093503	2.5	16
310	Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging. <i>Nanotechnology</i> , 2009 , 20, 365101	3.4	29
309	Oxygen precipitation in heavily phosphorus-doped Czochralski silicon: effect of nitrogen codoping. <i>Semiconductor Science and Technology</i> , 2009 , 24, 105030	1.8	2
308	Morphology and phase selective synthesis of EuF3 nanostructures by polyelectrolyte assisted chemical reaction and their optical properties. <i>Materials Chemistry and Physics</i> , 2009 , 115, 562-566	4.4	4
307	Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery. <i>Materials Research Bulletin</i> , 2009 , 44, 211-215	5.1	63
306	Hybrid nanostructures of Au nanocrystals and ZnO nanorods: Layer-by-layer assembly and tunable blue-shift band gap emission. <i>Materials Research Bulletin</i> , 2009 , 44, 889-892	5.1	22
305	Controllable growth of Se nanotubes and nanowires from different solvent during the sonochemical process. <i>Materials Letters</i> , 2009 , 63, 1-4	3.3	7
304	Controllable chemical reaction synthesis of Tb(OH)3 nanorods and their photoluminescence property. <i>Materials Letters</i> , 2009 , 63, 1180-1182	3.3	8
303	Fabrication and characterization of CuInS2 films by chemical bath deposition in acid conditions. Journal of Materials Science: Materials in Electronics, 2009 , 20, 609-613	2.1	20
302	Rapid-thermal-anneal-based internal gettering for germanium-doped Czochralski silicon. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 94, 905-910	2.6	5
301	Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, 625-632		12
300	Internal gettering for germanium-doped Czochralski silicon: Treated by rapid-thermal-anneal based processing simulation. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2009 , 159-160, 235-238	3.1	2

(2009-2009)

299	Oxygen precipitation in heavily phosphorus-doped silicon wafer annealed at high temperatures. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2009 , 159-160, 145-1	48 ¹	4
298	Structure of Ge® complexes in Czochralski silicon. <i>Physica B: Condensed Matter</i> , 2009 , 404, 58-60	2.8	10
297	Grown-in defects in heavily phosphorus-doped Czochralski silicon. <i>Physica B: Condensed Matter</i> , 2009 , 404, 4619-4621	2.8	2
296	Microcrystalline silicon carbide thin films grown by HWCVD at different filament temperatures and their application in n-i-p microcrystalline silicon solar cells. <i>Thin Solid Films</i> , 2009 , 517, 3513-3515	2.2	20
295	Iron precipitation in as-received Czochralski silicon during low temperature annealing. <i>Materials Science in Semiconductor Processing</i> , 2009 , 12, 185-188	4.3	3
294	Impurity engineering of Czochralski silicon used for ultra large-scaled-integrated circuits. <i>Journal of Crystal Growth</i> , 2009 , 311, 837-841	1.6	14
293	Enhancement effect of nitrogen co-doping on oxygen precipitation in heavily phosphorus-doped Czochralski silicon during high-temperature annealing. <i>Journal of Crystal Growth</i> , 2009 , 311, 3273-3277	1.6	1
292	Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2009 , 41, 920-922	3	17
291	A General Approach for Uniform Coating of a Metal Layer on MWCNTs via Layer-by-Layer Assembly. Journal of Physical Chemistry C, 2009 , 113, 17387-17391	3.8	23
290	A Versatile Approach for the Synthesis of ZnO Nanorod-Based Hybrid Nanomaterials via Layer-by-Layer Assembly. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 8147-8151	3.8	31
289	Enhanced photoluminescence of Tb3+ in SnO2 film by phosphorus diffusion process. <i>Journal of Alloys and Compounds</i> , 2009 , 474, 246-249	5.7	8
288	Transmission electron microscopy investigation of the micro-defects in Czochralski silicon. <i>Journal of Alloys and Compounds</i> , 2009 , 478, 758-762	5.7	6
287	Crystallization behaviors of TiO2 films derived from thermal oxidation of evaporated and sputtered titanium films. <i>Journal of Alloys and Compounds</i> , 2009 , 480, 938-941	5.7	18
286	Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport. <i>Optics Express</i> , 2009 , 17, 4712-7	3.3	20
285	Electrophotoluminescence of sol-gel derived ZnO film: effect of electric field on near-band-edge photoluminescence. <i>Optics Express</i> , 2009 , 17, 11434-9	3.3	7
284	Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. <i>Optics Express</i> , 2009 , 17, 14426-33	3.3	64
283	Electric-field-induced random lasing from ZnO and Mg0.1Zn0.9O films optically pumped with an extremely low intensity. <i>Optics Express</i> , 2009 , 17, 18513-7	3.3	3
282	Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness. <i>Journal of Applied Physics</i> , 2009 , 106, 063120	2.5	29

281	Electroluminescence from TiO2/p+-Si heterostructure. <i>Applied Physics Letters</i> , 2009 , 94, 061115	3.4	14
280	Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2. <i>Applied Physics Letters</i> , 2009 , 95, 252102	3.4	20
279	General Layer-By-Layer Approach To Composite Nanotubes and Their Enhanced Lithium-Storage and Gas-Sensing Properties. <i>Chemistry of Materials</i> , 2009 , 21, 5264-5271	9.6	34
278	Carbon Nanotube-ZnO Nanosphere Heterostructures: Low-Temperature Chemical Reaction Synthesis, Photoluminescence, and Their Application for Room Temperature NH3 Gas Sensor. <i>Science of Advanced Materials</i> , 2009 , 1, 13-17	2.3	37
277	Controllable synthesis of uncapped metal nanoparticle assembly at the airwater interface. <i>Materials Chemistry and Physics</i> , 2008 , 111, 271-274	4.4	7
276	Controllable growth of dendrite-like CuO nanostructures by ethylene glycol assisted hydrothermal process. <i>Materials Research Bulletin</i> , 2008 , 43, 1291-1296	5.1	44
275	Sub-2nm SnO2 nanocrystals: A reduction/oxidation chemical reaction synthesis and optical properties. <i>Materials Research Bulletin</i> , 2008 , 43, 3164-3170	5.1	15
274	One-pot, large-scale synthesis of SnO2 nanotubes at room temperature. <i>Chemical Communications</i> , 2008 , 3028-30	5.8	62
273	Homogeneous coating of Au and SnO2 nanocrystals on carbon nanotubes via layer-by-layer assembly: a new ternary hybrid for a room-temperature CO gas sensor. <i>Chemical Communications</i> , 2008 , 6182-4	5.8	67
272	Cobalt ferrite nanorings: Ostwald ripening dictated synthesis and magnetic properties. <i>Chemical Communications</i> , 2008 , 5648-50	5.8	28
271	Effect of annealing atmosphere on the recombination activity of copper precipitates formed by rapid thermal process in conventional and nitrogen-doped Czochralski silicon wafers. <i>Journal of Applied Physics</i> , 2008 , 103, 014912	2.5	3
270	Phase-Selective Synthesis and Self-Assembly of Monodisperse Copper Sulfide Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13390-13394	3.8	58
269	From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co(3)O(4) nanorods for high performance lithium-ion battery electrodes. <i>Nanotechnology</i> , 2008 , 19, 035711	3.4	99
268	Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil. <i>Nanotechnology</i> , 2008 , 19, 375602	3.4	28
267	Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. <i>Applied Physics Letters</i> , 2008 , 92, 041119	3.4	137
266	Influence of substrates in ZnO devices on the surface plasmon enhanced light emission. <i>Optics Express</i> , 2008 , 16, 8896-901	3.3	20
265	Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 14836-42	3.4	74
264	Influence of germanium doping on the mechanical strength of Czochralski silicon wafers. <i>Journal of Applied Physics</i> , 2008 , 103, 123521	2.5	25

263	Electroluminescence of silicon-rich silicon nitride light-emitting devices 2008,		3
262	Functionalization of carbon nanotubes with magnetic nanoparticles: general nonaqueous synthesis and magnetic properties. <i>Nanotechnology</i> , 2008 , 19, 315604	3.4	24
261	Magnesium catalyzed growth of SiO(2) hierarchical nanostructures by a thermal evaporation process. <i>Nanotechnology</i> , 2008 , 19, 165601	3.4	10
2 60	Hydrothermal Synthesis and Photoluminescence of Eu2 \square SmxSn2O7 (x = 0 \square .0) Nanophosphors. Journal of Nanoscience and Nanotechnology, 2008 , 8, 1427-1431	1.3	8
259	Ge-vacancy pair in Ge-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2008 , 103, 123519	2.5	13
258	Electroluminescence of SnO2p-Si heterojunction. <i>Applied Physics Letters</i> , 2008 , 92, 121908	3.4	51
257	Effect of silicon interstitials on Cu precipitation in n-type Czochralski silicon. <i>Journal of Applied Physics</i> , 2008 , 103, 093534	2.5	10
256	Oxygen precipitation in Czochralski silicon: Effect of ramped anneal from 300to750fC. <i>Journal of Applied Physics</i> , 2008 , 103, 064911	2.5	7
255	Copper precipitation in nitrogen-doped Czochralski silicon. Journal of Applied Physics, 2008, 104, 0135	082.5	2
254	Enhanced oxygen precipitation in neutron-irradiated nitrogen-doped Czochralski silicon crystal. <i>Journal of Applied Physics</i> , 2008 , 104, 123523	2.5	8
253	Reductive hydrothermal synthesis of La(OH)3:Tb3+ nanorods as a new green emitting phosphor. Journal of Nanoparticle Research, 2008 , 10, 307-312	2.3	18
252	Effect of point defects on the recombination activity of copper precipitates in p-type Czochralski silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2008 , 19, 32-35	2.1	3
251	Enhanced oxygen diffusion in Czochralski silicon at 450B50 CC. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1148-1151	1.6	3
250	Effect of vacancies on copper precipitation in n-type Czochralski silicon. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2662-2665	1.6	
249	Hydrofluoric acid free synthesis of macropores on silicon by chemical vapor deposition and their photoluminescence. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 494-498	3	
248	A chromium-free etchant for delineation of defects in heavily doped n-type silicon wafers. <i>Materials Science in Semiconductor Processing</i> , 2008 , 11, 131-136	4.3	6
247	Effect of rapid thermal treatment on photoluminescence of surface passivated porous silicon. Journal of Luminescence, 2008 , 128, 317-320	3.8	О
246	Optical properties of single-phase FeSi2 films fabricated by electron beam evaporation. <i>Applied Surface Science</i> , 2008 , 254, 4875-4878	6.7	10

245	Electron-beam-induced current evidence for room-temperature photoluminescence of silicon pn diode. <i>Vacuum</i> , 2008 , 82, 1337-1340	3.7	3
244	Photoluminescence of Tb3+-doped SiNx films with different Si concentrations. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 146, 126-130	3.1	6
243	Microcrystalline silicon-carbon alloys as anti-reflection window layers in high efficiency thin film silicon solar cells. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 160-162	2.5	13
242	Room temperature electroluminescence from a nanocrystalline diamond/Si heterojunction. <i>Diamond and Related Materials</i> , 2007 , 16, 306-310	3.5	4
241	Ultraviolet electroluminescence from ZnOp-Si heterojunctions. <i>Journal of Applied Physics</i> , 2007 , 101, 053103	2.5	112
240	Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters. <i>Applied Physics Letters</i> , 2007 , 90, 131903	3.4	106
239	A model for distribution of oxygen in multicrystalline silicon ingot grown by directional solidification. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 1688-1691	6.4	20
238	A comparison of cathodoluminescence and photoluminescence of porous silicon and the influence of aging and electron irradiation of these properties. <i>Solid State Communications</i> , 2007 , 143, 197-201	1.6	4
237	The influence of microstructure on optical properties of porous silicon. <i>Solid-State Electronics</i> , 2007 , 51, 678-682	1.7	7
236	Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. <i>Surface and Coatings Technology</i> , 2007 , 201, 5870-5874	4.4	56
235	Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH4/H2 gas mixture. <i>Surface and Coatings Technology</i> , 2007 , 202, 261-267	4.4	52
234	Diamond nanocrystals and amorphous SiOx nanowires formed by rapid thermal annealing of carbon film. <i>Thin Solid Films</i> , 2007 , 515, 6707-6712	2.2	1
233	A novel low-temperature chemical solution route for straight and dendrite-like ZnO nanostructures. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2007 , 141, 76-81	3.1	10
232	Effects of defect, carrier concentration and annealing process on the photoluminescence of silicon pn diodes. <i>Materials Science in Semiconductor Processing</i> , 2007 , 10, 173-178	4.3	4
231	Recombination activity of nickel in nitrogen-doped Czochralski silicon treated by rapid thermal processing. <i>Materials Science in Semiconductor Processing</i> , 2007 , 10, 222-226	4.3	1
230	Variations of high-pressure thermoelectric and mechanical properties of Si single crystals under doping with N and PII pre-treatment. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2007 , 462, 347-350	5.3	4
229	Flower-like silicon nanostructures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2007 , 38, 27-30	3	5
228	Effect of the substrate temperature on the crystallization of TiO2 films prepared by DC reactive magnetron sputtering. <i>Journal of Crystal Growth</i> , 2007 , 300, 551-554	1.6	44

(2007-2007)

227	Crystal-originated particles in germanium-doped Czochralski silicon crystal. <i>Journal of Crystal Growth</i> , 2007 , 306, 262-268	1.6	8
226	Dissolution of oxygen precipitates in germanium-doped Czochralski silicon during rapid thermal annealing. <i>Journal of Crystal Growth</i> , 2007 , 308, 247-251	1.6	1
225	Electron-beam-induced current study of grain boundaries in multicrystalline Si. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2007 , 4, 2908-2917		20
224	Effects of two-step rapid thermal processing in different ambients on denuded zone and oxygen precipitation in Czochralski silicon. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2007 , 4, 3080-3085		
223	Evolution of nitrogen pairs and nitrogen-oxygen complexes in nitrogen-doped Czochralski silicon. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2007 , 4, 3090-3094		2
222	Hydrothermal Synthesis and Characterization of Zirconia Nanocrystallites. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1334-1338	3.8	22
221	Hydrothermal Synthesis and Photoluminescence Properties of La2\(\textrm{La2\textrm{UEuxSn2O7}}\) (x=0\(\textrm{L}.0\)) Nanocrystals. Journal of the American Ceramic Society, 2007 , 90, 3095-3098	3.8	26
220	Tailor of ZnO morphology by heterogeneous nucleation in the aqueous solution. <i>Materials Research Bulletin</i> , 2007 , 42, 1316-1322	5.1	4
219	Cathodoluminescence and its mapping of flower-like ZnO, ZnO/ZnS coreBhell and tube-like ZnS nanostructures. <i>Materials Research Bulletin</i> , 2007 , 42, 1286-1292	5.1	14
218	Sonochemical synthesis of amorphous long silver sulfide nanowires. <i>Materials Letters</i> , 2007 , 61, 235-23	83.3	31
217	Infrared spectra of silicon nanowires. <i>Materials Letters</i> , 2007 , 61, 894-896	3.3	9
216	Synthesis of flower-like CdS nanostructures by organic-free hydrothermal process and their optical properties. <i>Materials Letters</i> , 2007 , 61, 3507-3510	3.3	32
215	Aligned single crystal Al-catalyzed boron nanorods on Si substrates. <i>European Physical Journal B</i> , 2007 , 56, 35-39	1.2	10
214	Surface synthesis of PbS nanoparticles on silica spheres by a sonochemical approach. <i>Journal of Materials Science</i> , 2007 , 42, 1376-1380	4.3	11
213	The optical properties of porous silicon produced by metal-assisted anodic etching. <i>Journal of Materials Science</i> , 2007 , 42, 8496-8500	4.3	11
212	A facile two-step hydrothermal route for the synthesis of Fe2O3 nanocrystals and their magnetic properties. <i>Journal of Materials Science</i> , 2007 , 42, 9205-9209	4.3	27
211	Study of photoconductivity and photoluminescence of organic/porous silicon complexes. <i>Applied Surface Science</i> , 2007 , 253, 4566-4569	6.7	1
210	Low temperature chemical reaction synthesis of single-crystalline Eu(OH)3nanorods and their thermal conversion to Eu2O3nanorods. <i>Nanotechnology</i> , 2007 , 18, 065605	3.4	24

209	STUDY OF OPTICAL PROPERTIES OF POROUS SILICON PRODUCED BY METAL-AID. <i>Modern Physics Letters B</i> , 2007 , 21, 1989-1997	1.6	1
208	Intrinsic gettering Based on rapid thermal annealing in germanium-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2007 , 101, 033526	2.5	15
207	Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures. <i>Journal of Applied Physics</i> , 2007 , 101, 103504	2.5	27
206	Oxygen precipitate denuded zone formation in Czochralski silicon wafer based on rapid thermal processing in nitrogen ambient. <i>Semiconductor Science and Technology</i> , 2007 , 22, 1302-1306	1.8	4
205	Investigation of intrinsic gettering for germanium doped Czochralski silicon wafer. <i>Journal of Applied Physics</i> , 2007 , 101, 113512	2.5	12
204	Effect of point defects on copper-related deep levels in p-type Czochralski silicon. <i>Journal of Applied Physics</i> , 2007 , 102, 073521	2.5	4
203	Electrically pumped ZnO film ultraviolet random lasers on silicon substrate. <i>Applied Physics Letters</i> , 2007 , 91, 251109	3.4	115
202	347nm ultraviolet electroluminescence from MgxZn1⊠O-based light emitting devices. <i>Applied Physics Letters</i> , 2007 , 90, 251115	3.4	22
201	Electroluminescent and carrier transport mechanisms of MgxZn1\(\text{MOB} i heterojunctions. \(Journal of Applied Physics, \text{ 2007}, 102, 083106 \)	2.5	3
200	Enhanced red electroluminescence from a polycrystalline diamond film/Si heterojunction structure. <i>Applied Physics Letters</i> , 2007 , 90, 161123	3.4	5
199	Influence of copper precipitation on the formation of denuded zone in Czochralski silicon. <i>Journal of Applied Physics</i> , 2007 , 102, 114506	2.5	6
198	ZnO:Eu thin-films: Solਊel derivation and strong photoluminescence from 5D0 -j7F0 transition of Eu3+ ions. <i>Journal of Alloys and Compounds</i> , 2007 , 431, 317-320	5.7	53
197	From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties. <i>Nanotechnology</i> , 2007 , 18, 455604	3.4	66
196	Ligand-free Self-Assembly of Ceria Nanocrystals into Nanorods by Oriented Attachment at Low Temperature. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12677-12680	3.8	124
195	Low-temperature chemical solution route for ZnO based sulfide coaxial nanocables: general synthesis and gas sensor application. <i>Nanotechnology</i> , 2007 , 18, 115619	3.4	38
194	Electrophotoluminescence of ZnO film. <i>Applied Physics Letters</i> , 2007 , 91, 021105	3.4	24
193	Micro-characterisation of Si wafers by high-pressure thermopower technique. <i>Physica B: Condensed Matter</i> , 2006 , 376-377, 177-180	2.8	6
192	Growth of misfit dislocation-free p/p+ thick epitaxial silicon wafers on Ge B -codoped substrates. <i>Physica B: Condensed Matter</i> , 2006 , 376-377, 841-844	2.8	6

(2006-2006)

191	Effect of annealing on photoluminescence of passivated porous silicon. <i>Solid-State Electronics</i> , 2006 , 50, 1529-1531	1.7	13
190	Nitrogen-doped Czochralski silicon treated in rapid thermal process. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2006 , 134, 193-201	3.1	1
189	MgO nanostructures synthesized by thermal evaporation. <i>Materials Science and Engineering C</i> , 2006 , 26, 1097-1101	8.3	40
188	Blue light emission of porous silicon subjected to RTP treatments. <i>Science Bulletin</i> , 2006 , 51, 2696-2699		1
187	Temperature dependence of the first-order Raman scattering in silicon nanowires. <i>Scripta Materialia</i> , 2006 , 55, 183-186	5.6	23
186	The structural evolution of nanocrystalline diamond films synthesized by r.f. PECVD. <i>Materials Letters</i> , 2006 , 60, 730-733	3.3	7
185	Synthesis and characterization of CdS based sulfide coaxial cable and nanotubes by sacrificial approach. <i>Materials Letters</i> , 2006 , 60, 2004-2008	3.3	3
184	Hydrothermal synthesis, characterization and properties of SnS nanoflowers. <i>Materials Letters</i> , 2006 , 60, 2686-2689	3.3	54
183	Synthesis and characterization of single crystalline MnOOH and MnO2 nanorods by means of the hydrothermal process assisted with CTAB. <i>Materials Letters</i> , 2006 , 60, 3895-3898	3.3	19
182	Effect of Nitrogen Doping on Oxygen Precipitate Profiles in Czochralski Silicon Wafer. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 4903-4907	1.4	2
181	Denuded zone in Czochralski silicon wafer with high carbon content. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 11131-11138	1.8	4
180	Thermal-desorption induced enhancement and patterning of ultraviolet emission in chemically grown ZnO. <i>Nanotechnology</i> , 2006 , 17, 2789-2793	3.4	22
179	Enhancement effect of germanium on oxygen precipitation in Czochralski silicon. <i>Journal of Applied Physics</i> , 2006 , 99, 073509	2.5	30
178	Rapid-thermal-processing-based internal gettering for heavily boron-doped Czochralski silicon. Journal of Applied Physics, 2006 , 100, 103530	2.5	3
177	Photoluminescence of Tb3+ doped SiNx films grown by plasma-enhanced chemical vapor deposition. <i>Journal of Applied Physics</i> , 2006 , 100, 083106	2.5	24
176	Enhancement and patterning of ultraviolet emission in ZnO with an electron beam. <i>Applied Physics Letters</i> , 2006 , 88, 134103	3.4	95
175	A simple hydrothermal route for synthesizing SnO2quantum dots. <i>Nanotechnology</i> , 2006 , 17, 2386-2389	93.4	173
174	Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1107-10	3.4	14

173	Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 827-30	3.4	67
172	Demonstration of optical microfiber knot resonators. <i>Applied Physics Letters</i> , 2006 , 88, 223501	3.4	172
171	Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 19147-53	3.4	55
170	Shape-Control Fabrication and Characterization of the Airplane-like FeO(OH) and Fe2O3 Nanostructures. <i>Crystal Growth and Design</i> , 2006 , 6, 351-353	3.5	98
169	Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7631-4	3.4	90
168	General solution route for nanoplates of hexagonal oxide or hydroxide. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11196-8	3.4	33
167	Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices. <i>Applied Physics Letters</i> , 2006 , 89, 111112	3.4	74
166	Temperature-dependent Raman scattering of silicon nanowires. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1229-34	3.4	45
165	Effect of annealing atmosphere on oxygen precipitation and formation of denuded zone in Czochralski silicon wafer. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 2370-23	375 ⁶	7
164	Effect of ramping anneals under inert or oxidizing ambient on the formation of oxygen precipitate denuded zone in nitrogen-doped Czochralski silicon wafers. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 1934-1939	1.6	
163	Effects of rapid thermal processing on oxide precipitation in conventional and nitrogen-doped Czochralski silicon. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 670-676	1.6	O
162	Germanium effect on oxygen-related defects in Czochralski silicon. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 685-695	1.6	8
161	Preface: phys. stat. sol. (a) 203/4. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 657-658	1.6	
160	A simple and novel low-temperature hydrothermal synthesis of ZnO nanorods. <i>Inorganic Materials</i> , 2006 , 42, 1210-1214	0.9	19
159	Scanning infrared microscopy investigation of copper precipitation in cast multicrystalline silicon. <i>Infrared Physics and Technology</i> , 2006 , 47, 240-245	2.7	4
158	Enhancement of oxygen precipitation in Czochralski silicon wafers by high-temperature anneals. <i>Physica B: Condensed Matter</i> , 2006 , 376-377, 169-172	2.8	2
157	Effect of nitrogen doping on denuded zone formed by rapid thermal process in Czochralski silicon wafer. <i>Physica B: Condensed Matter</i> , 2006 , 376-377, 216-219	2.8	5
156	Stress dependent structure of annealed nitrogen-doped Cz-Si. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2006 , 134, 218-221	3.1	1

(2006-2006)

155	Defects in Ge-doped Cz-Si annealed under high stress. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 82-87	4.3	8	
154	Recombination activity of nickel in Czochralski silicon during rapid thermal process. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 296-299	4.3	4	
153	Germanium-doped Czochralski silicon: Oxygen precipitates and their annealing behavior. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 600-605	4.3	5	
152	Stress-dependent transformation of interstitial oxygen in processed Ge-doped Cz-Si. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2006 , 253, 205-209	1.2	5	
151	Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine. <i>Sensors and Actuators B: Chemical</i> , 2006 , 113, 324-328	8.5	91	
150	A selective NH3 gas sensor based on Fe2O3InO nanocomposites at room temperature. <i>Sensors and Actuators B: Chemical</i> , 2006 , 114, 910-915	8.5	131	
149	Transformation mechanism of Te particles into Te nanotubes and nanowires during solvothermal process. <i>Journal of Crystal Growth</i> , 2006 , 289, 568-573	1.6	10	
148	Effect of carbon doping on oxygen precipitation behavior in internal gettering processing for Czochralski silicon. <i>Journal of Crystal Growth</i> , 2006 , 290, 61-66	1.6	9	
147	Germanium effect on as-grown oxygen precipitation in Czochralski silicon. <i>Journal of Crystal Growth</i> , 2006 , 291, 66-71	1.6	13	
146	Micro-defects in Ge doped Czochralski grown Si crystals. <i>Journal of Crystal Growth</i> , 2006 , 292, 266-271	1.6	20	
145	Crystal growth and oxygen precipitation behavior of 300 mm nitrogen-doped Czochralski silicon. Journal of Crystal Growth, 2006 , 292, 257-259	1.6	2	
144	One-dimensional silicon nanostructures fabricated by thermal evaporation. <i>Materials Science and Engineering C</i> , 2006 , 26, 800-804	8.3	0	
143	Effect of light germanium doping on thermal donors in Czochralski silicon wafers. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 110-113	4.3	10	
142	Recombination behavior of nickel in cast multicrystalline silicon. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 304-307	4.3	7	
141	Crystallization of amorphous silicon thin films: The effect of rapid thermal processing pretreatment. <i>Vacuum</i> , 2006 , 80, 415-420	3.7	12	
140	Amorphous SiO x nanowires grown on silicon (100) substrates via rapid thermal process of nanodiamond films. <i>Thin Solid Films</i> , 2006 , 503, 18-21	2.2	5	
139	Hydrothermal synthesis and characterization of novel aloe-like SnS2 nanostructures. <i>Journal of Materials Science</i> , 2006 , 41, 3489-3492	4.3	15	
138	Al-assisted Anodic Etched Porous Silicon. <i>Journal of Materials Science</i> , 2006 , 41, 5283-5286	4.3	6	

137	InOOH hollow spheres synthesized by a simple hydrothermal reaction. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 20676-9	3.4	58
136	Carbon-assisted synthesis of aligned ZnO nanowires. <i>Materials Letters</i> , 2005 , 59, 2710-2714	3.3	22
135	Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution. <i>Materials Letters</i> , 2005 , 59, 3393-3397	3.3	36
134	Copper precipitation in large-diameter Czochralski silicon. <i>Journal of Applied Physics</i> , 2005 , 97, 094909	2.5	19
133	Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 17055-9	3.4	54
132	Controllable Growth of ZnO Microcrystals by a Capping-Molecule-Assisted Hydrothermal Process. <i>Crystal Growth and Design</i> , 2005 , 5, 547-550	3.5	307
131	Electron-beam-induced current study of hydrogen passivation on grain boundaries in multicrystalline silicon: Influence of GB character and impurity contamination. <i>Physica B: Condensed Matter</i> , 2005 , 364, 162-169	2.8	36
130	Effect of post-treatment processes on the photoluminescence of porous silicon. <i>Physica B: Condensed Matter</i> , 2005 , 364, 180-185	2.8	10
129	Silicon nano-wires grown at low temperature. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 27, 309-313	3	4
128	Crystalline boron oxide nanowires on silicon substrate. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 27, 319-324	3	20
127	Novel CuS hollow spheres fabricated by a novel hydrothermal method. <i>Microporous and Mesoporous Materials</i> , 2005 , 80, 153-156	5.3	58
126	Excitation transfer from porous silicon to polymer. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 121, 229-231	3.1	10
125	Thermal nitridation kinetics of silicon wafers in nitrogen atmosphere during annealing. <i>Thin Solid Films</i> , 2005 , 474, 326-329	2.2	5
124	Annealing and amorphous silicon passivation of porous silicon with blue light emission. <i>Applied Surface Science</i> , 2005 , 252, 1065-1069	6.7	11
123	Comment on "electronic transport, structure, and energetics of endohedral Gd@C82 metallofullerenes". <i>Nano Letters</i> , 2005 , 5, 2340; discussion 2341	11.5	10
122	Self-assembly of CdS: from nanoparticles to nanorods and arrayed nanorod bundles. <i>Materials Chemistry and Physics</i> , 2005 , 93, 65-69	4.4	45
121	Synthesis of aluminium borate nanowires by solgel method. <i>Materials Research Bulletin</i> , 2005 , 40, 1551-	-155£7	35
120	Synthesis of cadmium hydroxide nanoflake and nanowisker by hydrothermal method. <i>Materials Letters</i> , 2005 , 59, 56-58	3.3	43

(2004-2005)

119	Hydrothermal synthesis of flower-like SrCO3 nanostructures. <i>Materials Letters</i> , 2005 , 59, 420-422	3.3	52
118	Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine. <i>Materials Letters</i> , 2005 , 59, 1024-1027	3.3	72
117	Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process. <i>Materials Letters</i> , 2005 , 59, 1696-1700	3.3	124
116	Copper sulfide micro-tubes fabricated by thermal evaporation of zinc sulfide. <i>Materials Letters</i> , 2005 , 59, 2094-2096	3.3	7
115	Synthesis of NiO nanowires by a sol-gel process. <i>Materials Letters</i> , 2005 , 59, 1967-1970	3.3	82
114	Some critical factors in the synthesis of CdS nanorods by hydrothermal process. <i>Materials Letters</i> , 2005 , 59, 3037-3041	3.3	18
113	Photoluminescence of oxidized porous silicon under UV-light illumination. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 116, 95-98	3.1	22
112	Blue emission of porous silicon intensified by boron deposition. <i>Journal of Materials Science</i> , 2005 , 40, 5071-5073	4.3	2
111	Defects in germanium-doped Czochralski silicon. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 931-938	1.6	21
	Oxygen precipitation in neutron-irradiated Czochralski silicon annealed at elevated temperature.		
110	Physica Status Solidi A, 2005 , 202, 2442-2447		7
109		1.8	7
	Physica Status Solidi A, 2005 , 202, 2442-2447 Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping	1.8 2.5	
109	Physica Status Solidi A, 2005, 202, 2442-2447 Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals. Semiconductor Science and Technology, 2005, 20, 228-232 Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czochralski silicon. Journal		22
109	Physica Status Solidi A, 2005, 202, 2442-2447 Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals. Semiconductor Science and Technology, 2005, 20, 228-232 Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czochralski silicon. Journal of Applied Physics, 2005, 98, 084502 Recombination activity of B boundaries in boron-doped multicrystalline silicon: Influence of iron	2.5	10
109 108 107	Physica Status Solidi A, 2005, 202, 2442-2447 Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals. Semiconductor Science and Technology, 2005, 20, 228-232 Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czochralski silicon. Journal of Applied Physics, 2005, 98, 084502 Recombination activity of B boundaries in boron-doped multicrystalline silicon: Influence of iron contamination. Journal of Applied Physics, 2005, 97, 033701 A versatile solution route for oxide/sulfide coreBhell nanostructures and nonlayered sulfide	2.5 2.5	22 10 77
109 108 107 106	Physica Status Solidi A, 2005, 202, 2442-2447 Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals. Semiconductor Science and Technology, 2005, 20, 228-232 Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czochralski silicon. Journal of Applied Physics, 2005, 98, 084502 Recombination activity of B boundaries in boron-doped multicrystalline silicon: Influence of iron contamination. Journal of Applied Physics, 2005, 97, 033701 A versatile solution route for oxide/sulfide coreEhell nanostructures and nonlayered sulfide nanotubes. Nanotechnology, 2005, 16, 2721-2725 Crystallization and Raman Shift of Array-Orderly Silicon Nanowires after Annealing at High	2.5 2.5 3·4	22 10 77 22
109 108 107 106	Physica Status Solidi A, 2005, 202, 2442-2447 Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals. Semiconductor Science and Technology, 2005, 20, 228-232 Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czochralski silicon. Journal of Applied Physics, 2005, 98, 084502 Recombination activity of B boundaries in boron-doped multicrystalline silicon: Influence of iron contamination. Journal of Applied Physics, 2005, 97, 033701 A versatile solution route for oxide/sulfide coreBhell nanostructures and nonlayered sulfide nanotubes. Nanotechnology, 2005, 16, 2721-2725 Crystallization and Raman Shift of Array-Orderly Silicon Nanowires after Annealing at High Temperature. Japanese Journal of Applied Physics, 2004, 43, 4460-4461 Texturization of cast multicrystalline silicon for solar cells. Semiconductor Science and Technology,	2.5 2.5 3.4 1.4	22 10 77 22

101	Effect of high temperaturepressure on nitrogen-doped Czochralski silicon. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 473-481	1.8	5
100	Aligned single crystal MgB2nanowires. Superconductor Science and Technology, 2004, 17, L31-L33	3.1	18
99	Germanium effect on oxygen precipitation in Czochralski silicon. <i>Journal of Applied Physics</i> , 2004 , 96, 4161-4165	2.5	30
98	Synthesis of MgO nanotube bundles. <i>Nanotechnology</i> , 2004 , 15, 1004-1008	3.4	42
97	Effect of oxygen precipitates and induced dislocations on oxidation-induced stacking faults in nitrogen-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2004 , 96, 3031-3033	2.5	
96	The effect of germanium doping on oxygen donors in Czochralski-grown silicon. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 5745-5750	1.8	29
95	Effect of nitrogen on denuded zone in Czochralski silicon wafer. <i>Semiconductor Science and Technology</i> , 2004 , 19, 548-551	1.8	12
94	Effects of rapid thermal processing on oxygen precipitation in Czochralski silicon wafer. Semiconductor Science and Technology, 2004 , 19, 630-633	1.8	10
93	Effect of rapid thermal processing on high temperature oxygen precipitation behaviour in Czochralski silicon wafer. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 3563-3569	1.8	3
92	The effect of the ramping rate on oxygen precipitation and the denuded zone in heavily doped Czochralski silicon. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 1539-1545	1.8	8
91	Hydrothermal synthesis of flower-like Bi2S3with nanorods in the diameter region of 30 nm. <i>Nanotechnology</i> , 2004 , 15, 1122-1125	3.4	36
90	Extended defects in nitrogen-doped Czochralski silicon during diode process. <i>Physica B: Condensed Matter</i> , 2004 , 348, 226-230	2.8	3
89	Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline. <i>Renewable Energy</i> , 2004 , 29, 2101-2107	8.1	68
88	Nickel precipitation in large-diameter Czochralski silicon. <i>Physica B: Condensed Matter</i> , 2004 , 344, 407-4	12 8	8
87	Synthesis of CdS nanotubes by chemical bath deposition. <i>Journal of Crystal Growth</i> , 2004 , 263, 372-376	1.6	50
86	Tiny SiO2 nano-wires synthesized on Si (111) wafer. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 23, 1-4	3	16
85	Silicon nanowires fabricated by thermal evaporation of silicon monoxide. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 23, 131-134	3	34
84	Raman spectrum of array-ordered crystalline silicon nanowires. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 23, 221-225	3	26

(2003-2004)

83	Silicon nano-wires fabricated by a novel thermal evaporation of zinc sulfide. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 24, 178-182	3	7
82	Silicon nano-wires fabricated by thermal evaporation of silicon wafer. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 24, 268-271	3	9
81	Sulfide-assisted growth of silicon nano-wires by thermal evaporation of sulfur powders. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 24, 278-281	3	13
80	Tiny silicon nano-wires synthesis on silicon wafers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 24, 328-332	3	5
79	Defects in nitrogen-doped multicrystalline silicon. <i>Physica B: Condensed Matter</i> , 2004 , 344, 1-4	2.8	5
78	Selenium Nanotubes Synthesized by a Novel Solution Phase Approach. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1179-1182	3.4	86
77	Influence of copper precipitation on oxygen precipitation in Czochralski silicon. <i>Semiconductor Science and Technology</i> , 2004 , 19, 299-305	1.8	15
76	CuO nanodendrites synthesized by a novel hydrothermal route. <i>Nanotechnology</i> , 2004 , 15, 1428-1432	3.4	116
75	Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3955-3958	3.4	446
74	Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process. <i>Nanotechnology</i> , 2004 , 15, 622-626	3.4	265
73	Microstructure of high temperatureBressure treated nitrogen-doped Czochralski silicon. <i>Journal of Alloys and Compounds</i> , 2004 , 382, 275-277	5.7	1
72	Synthesis of ultrafine lanthanum hydroxide nanorods by a simple hydrothermal process. <i>Materials Letters</i> , 2004 , 58, 1180-1182	3.3	59
71	Effects of complexing agent on CdS thin films prepared by chemical bath deposition. <i>Materials Letters</i> , 2004 , 58, 5-9	3.3	71
70	Dislocation Formation in Czochralski Si Crystal Growth Using an Annealed Heavily B-Doped Si Seed. Japanese Journal of Applied Physics, 2003 , 42, L1299-L1301	1.4	2
69	Hydrogen annealing of grown-in voids in nitrogen-doped Czochralski grown silicon. <i>Semiconductor Science and Technology</i> , 2003 , 18, 399-403	1.8	13
68	Star-shaped PbS crystals fabricated by a novel hydrothermal method. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, 7611-7615	1.8	35
67	Effect of Rapid Thermal Process on Oxygen Precipitation in Heavily Boron-Doped Czochralski Silicon Wafer. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 7290-7291	1.4	4
66	Bipolar Structure in Thermally Treated Czochralski Silicon Wafer. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 1129-1132	1.4	2

65	Oxidation-induced stacking faults and related grown-in oxygen precipitates in nitrogen-doped Czochralski silicon. <i>Semiconductor Science and Technology</i> , 2003 , 18, 393-397	1.8	2
64	Investigation of thermal donors in Czochralski silicon annealed at 450°LC under high pressure of 1GPa. <i>Physica B: Condensed Matter</i> , 2003 , 339, 204-207	2.8	1
63	Oxygen precipitation kinetics of Czochralski silicon preannealed under high pressure. <i>Physica B: Condensed Matter</i> , 2003 , 340-342, 1041-1045	2.8	
62	Array-orderly single crystalline silicon nano-wires. <i>Chemical Physics Letters</i> , 2003 , 367, 528-532	2.5	37
61	Single crystalline CdS nanorods fabricated by a novel hydrothermal method. <i>Chemical Physics Letters</i> , 2003 , 377, 654-657	2.5	97
60	Intrinsic gettering in germanium-doped Czochralski crystal silicon crystals. <i>Journal of Crystal Growth</i> , 2003 , 250, 359-363	1.6	24
59	Reduction of oxygen during the crystal growth in heavily antimony-doped Czochralski silicon. <i>Journal of Crystal Growth</i> , 2003 , 256, 261-265	1.6	5
58	Bipolar structure of carrier concentration in hydrogen pre-annealing Czochralski silicon wafer. <i>Physica B: Condensed Matter</i> , 2003 , 340-342, 601-604	2.8	
57	Photoluminescence properties of the composite of porous alumina and poly (2,5-dibutoxy-1,4 phenylenevinylene). <i>Journal of Luminescence</i> , 2003 , 105, 57-60	3.8	10
56	Effect of oxygen precipitation on voids in bulk silicon. <i>Microelectronic Engineering</i> , 2003 , 66, 289-296	2.5	2
55	Influence of oxygen precipitates on the warpage of annealed silicon wafers. <i>Microelectronic Engineering</i> , 2003 , 66, 345-351	2.5	8
54	Effect of nitrogen doping on the minority carrier lifetime in Czochralski silicon. <i>Microelectronic Engineering</i> , 2003 , 66, 373-378	2.5	8
53	Crystallization and disappearance of defects of the annealed silicon nanowires. <i>Microelectronic Engineering</i> , 2003 , 66, 65-69	2.5	21
52	Effect of rapid thermal process on oxygen precipitation and denuded zone in nitrogen-doped silicon wafers. <i>Microelectronic Engineering</i> , 2003 , 69, 97-104	2.5	18
51	Oxygen precipitation in Czochralski silicon annealed at 450°LC under a high pressure of 1 GPa. <i>Physica B: Condensed Matter</i> , 2003 , 327, 60-64	2.8	2
50	Transmission electron microscopy investigation of oxygen precipitation in Czochralski silicon annealed under high pressure. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 102, 84-87	3.1	6
49	Texturization of monocrystalline silicon with tribasic sodium phosphate. <i>Solar Energy Materials and Solar Cells</i> , 2003 , 77, 255-263	6.4	67
48	Effect of heat treatment on the optical and electrical properties of nitrogen-doped silicon samples. <i>Microelectronic Engineering</i> , 2003 , 66, 297-304	2.5	2

(2001-2003)

47	Behavior of oxidation-induced stacking faults in annealed Czochralski silicon doped by nitrogen. Journal of Applied Physics, 2003 , 93, 8926-8929	2.5	5
46	Arrays of ZnO nanowires fabricated by a simple chemical solution route. <i>Nanotechnology</i> , 2003 , 14, 423	-426	107
45	Single-crystalline SnS2nano-belts fabricated by a novel hydrothermal method. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, L661-L665	1.8	36
44	Long Bi2S3nanowires prepared by a simple hydrothermal method. <i>Nanotechnology</i> , 2003 , 14, 974-977	3.4	89
43	Effect of intrinsic point defects on copper precipitation in large-diameter Czochralski silicon. <i>Applied Physics Letters</i> , 2003 , 83, 3048-3050	3.4	22
42	The impact of nitrogen on power diode characteristics. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2002 , 91-92, 495-497	3.1	3
41	Effect of heat treatment on carbon in multicrystalline silicon. <i>Solar Energy Materials and Solar Cells</i> , 2002 , 72, 541-549	6.4	11
40	Directional CdS nanowires fabricated by chemical bath deposition. <i>Journal of Crystal Growth</i> , 2002 , 246, 108-112	1.6	70
39	Oxygen in Czochralski silicon used for solar cells. Solar Energy Materials and Solar Cells, 2002, 72, 133-13	38 6.4	6
38	Germanium effect on void defects in Czochralski silicon. <i>Journal of Crystal Growth</i> , 2002 , 243, 371-374	1.6	41
37	Synthesis of La1⊠CaxMnO3 nanowires by a solgel process. <i>Chemical Physics Letters</i> , 2002 , 363, 579-582	2.5	43
36	Formation of pnp bipolar structure by thermal donors in nitrogen-containing p-type Czochralski silicon wafers. <i>Applied Physics Letters</i> , 2002 , 81, 496-498	3.4	27
35	Grown-in defects in nitrogen-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 2002 , 92, 188-194	2.5	76
34	Shallow thermal donors in silicon doped with isotopic oxygen. <i>Physica B: Condensed Matter</i> , 2001 , 302-303, 193-196	2.8	7
33	Intrinsic gettering of Czochralski silicon annealed in argon and nitrogen atmosphere. <i>Physica B: Condensed Matter</i> , 2001 , 307, 40-44	2.8	7
32	Transmission electron microscopic observation of oxygen precipitates in nitrogen-doped silicon. <i>Microelectronic Engineering</i> , 2001 , 56, 205-208	2.5	6
31	Nitrogen effect on self-interstitial generation in Czochralski silicon revealed by gold diffusion experiments. <i>Journal of Applied Physics</i> , 2001 , 90, 3642-3644	2.5	9
30	Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy. <i>Journal of Applied Physics</i> , 2001 , 90, 4219-4223	2.5	262

29	Electrical Activity of Nitrogen Dxygen Complexes in Silicon. <i>Physica Status Solidi (B): Basic Research</i> , 2000 , 221, 641-645	1.3	2
28	Infrared absorption of nitrogenBxygen complex in silicon. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2000 , 72, 121-123	3.1	11
27	Oxygen-related centers in multicrystalline silicon. Solar Energy Materials and Solar Cells, 2000, 62, 37-42	6.4	18
26	Oxygen precipitation in nitrogen-doped Czochralski silicon. <i>Physica B: Condensed Matter</i> , 1999 , 273-274, 308-311	2.8	35
25	Effects of nitrogen on dislocations in silicon during heat treatment. <i>Physica B: Condensed Matter</i> , 1999 , 273-274, 553-556	2.8	38
24	Influence of Dislocations on NitrogenDxygen Complex in Silicon. <i>Physica Status Solidi A</i> , 1999 , 171, 203-	207	2
23	Nitrogen Dxygen Complexes in Silicon. <i>Physica Status Solidi (B): Basic Research</i> , 1998 , 210, 295-299	1.3	14
22	Thermal Warpage of Czochralski Silicon Wafers Grown under a Nitrogen Ambience. <i>Physica Status Solidi A</i> , 1998 , 169, 193-198		8
21	Effect of iron on oxygen precipitation in nitrogen-doped Czochralski silicon. <i>Journal of Applied Physics</i> , 1998 , 84, 5502-5505	2.5	5
20	Effect of nitrogenbxygen complex on electrical properties of Czochralski silicon. <i>Applied Physics Letters</i> , 1996 , 68, 487-489	3.4	69
19	Donor formation in nitrogen doped silicon. <i>Journal of Applied Physics</i> , 1996 , 80, 1493-1498	2.5	23
18	Nitrogen effects on thermal donor and shallow thermal donor in silicon. <i>Journal of Applied Physics</i> , 1995 , 77, 943-944	2.5	46
17	Thermal acceptor formation in nitrogen-doped silicon. <i>Applied Physics Letters</i> , 1991 , 59, 1227-1229	3.4	10
16	A New Design of Side Heater for 3D Solid-liquid Interface Improvement in G8 Directional Solidification Silicon Ingot Growth. <i>Silicon</i> ,1	2.4	O
15	PdPtRu nanocages with tunable compositions for boosting the methanol oxidation reaction. <i>Nanoscale Advances</i> ,	5.1	1
14	Effect of Germanium Codoping on the Grown-In Oxide Precipitates in Nitrogen-Doped Czochralski Silicon. <i>Physica Status Solidi (A) Applications and Materials Science</i> ,2100642	1.6	
13	Tuning the Photon Sensitization Mechanism in Metal-Halide-Perovskite-Based Nanocomposite Films Toward Highly Efficient and Stable X-Ray Detection. <i>Advanced Optical Materials</i> ,2102320	8.1	3
12	Carrier Injection and Annealing-Enhanced Electrical Performance in Tunnel Oxide-Passivated Contact Silicon Solar Cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> ,2100614	1.6	O

LIST OF PUBLICATIONS

11	Self-Powered FA0.55MA0.45PbI3 Single-Crystal Perovskite X-Ray Detectors with High Sensitivity. <i>Advanced Functional Materials</i> ,2109149	15.6	19
10	CVD Graphene on Textured Silicon: An Emerging Technologically Versatile Heterostructure for Energy and Detection Applications. <i>Advanced Materials Interfaces</i> ,2100977	4.6	3
9	Strain effect in Pd@PdAg twinned nanocrystals towards ethanol oxidation electrocatalysis. <i>Nanoscale Advances</i> ,	5.1	1
8	Dual-Modal Optoelectronic Synaptic Devices with Versatile Synaptic Plasticity. <i>Advanced Functional Materials</i> ,2107973	15.6	12
7	Mitigating Ion Migration by Polyethylene Glycol-Modified Fullerene for Perovskite Solar Cells with Enhanced Stability. <i>ACS Energy Letters</i> ,3864-3872	20.1	10
6	Performance Improvement of Gallium-Doped Passivated Emitter and Rear Cells by Two-Step Bias Application. <i>Solar Rrl</i> ,2100738	7.1	3
5	A unique ligand effect in Pt-based core@hell nanocubes to boost oxygen reduction electrocatalysis. <i>Journal of Materials Chemistry A</i> ,	13	1
4	Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. <i>Nano Research</i> ,1	10	15
3	Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements. <i>Chinese Physics B</i> ,	1.2	3
2	Revealing the Correlation of Light Soaking Effect with Ion Migration in Perovskite Solar Cells. <i>Solar Rrl</i> ,2200050	7.1	1
1	Hyperdoped Crystalline Silicon for Infrared Photodetectors by Pulsed Laser Melting: A Review. <i>Physica Status Solidi (A) Applications and Materials Science</i> ,2100772	1.6	О