Olli Peltola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3230806/publications.pdf

Version: 2024-02-01

414414 430874 1,268 33 18 32 h-index citations g-index papers 65 65 65 2185 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences, 2018, 15, 429-445.	3.3	81
2	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	9.9	79
3	Temporal Variation of Ecosystem Scale Methane Emission From a Boreal Fen in Relation to Temperature, Water Table Position, and Carbon Dioxide Fluxes. Global Biogeochemical Cycles, 2018, 32, 1087-1106.	4.9	78
4	Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems. Atmospheric Measurement Techniques, 2016, 9, 4915-4933.	3.1	69
5	Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, 2019, 11, 1263-1289.	9.9	69
6	Standardisation of eddy-covariance flux measurements of methane and nitrous oxide. International Agrophysics, 2018, 32, 517-549.	1.7	66
7	Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1296-1314.	3.0	64
8	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	9.5	59
9	Random uncertainties of flux measurements by the eddy covariance technique. Atmospheric Measurement Techniques, 2016, 9, 5163-5181.	3.1	58
10	Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems: a review. International Agrophysics, 2018, 32, 439-455.	1.7	55
11	Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions. Scientific Reports, 2016, 6, 25739.	3.3	51
12	ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO ₂ , water, and energy fluxes on daily to annual scales. Geoscientific Model Development, 2018, 11, 497-519.	3.6	43
13	Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements. Biogeosciences, 2013, 10, 3749-3765.	3.3	42
14	Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia. Agricultural and Forest Meteorology, 2018, 250-251, 376-387.	4.8	39
15	Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment. Biogeosciences, 2014, 11, 3163-3186.	3.3	38
16	Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions. Biogeosciences, 2015, 12, 415-432.	3.3	28
17	Studying the spatial variability of methane flux with five eddy covariance towers of varying height. Agricultural and Forest Meteorology, 2015, 214-215, 456-472.	4.8	27
18	HIMMELI v1.0: Helsinkl Model of MEthane buiLd-up and emlssion for peatlands. Geoscientific Model Development, 2017, 10, 4665-4691.	3.6	24

#	Article	IF	CITATIONS
19	Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog. Biogeosciences, 2019, 16, 2409-2421.	3.3	17
20	Technical note: Comparison of methane ebullition modelling approaches used in terrestrial wetland models. Biogeosciences, 2018, 15, 937-951.	3.3	16
21	Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface. Atmospheric Measurement Techniques, 2021, 14, 2409-2427.	3.1	13
22	Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil. Biogeosciences, 2016, 13, 1255-1268.	3.3	12
23	Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC. Geoscientific Model Development, 2018, 11, 1199-1228.	3.6	12
24	Seasonal and diurnal variation in CO fluxes from an agricultural bioenergy crop. Biogeosciences, 2016, 13, 5471-5485.	3.3	10
25	Ejective and Sweeping Motions Above a Peatland and Their Role in Relaxed-Eddy-Accumulation Measurements and Turbulent Transport Modelling. Boundary-Layer Meteorology, 2018, 169, 163-184.	2.3	9
26	Topography-based statistical modelling reveals high spatial variability and seasonal emission patches in forest floor methane flux. Biogeosciences, 2021, 18, 2003-2025.	3.3	9
27	Impact of coordinate rotation on eddy covariance fluxes at complex sites. Agricultural and Forest Meteorology, 2020, 287, 107940.	4.8	8
28	A Physicsâ€Based Universal Indicator for Vertical Decoupling and Mixing Across Canopies Architectures and Dynamic Stabilities. Geophysical Research Letters, 2021, 48, e2020GL091615.	4.0	8
29	The high-frequency response correction of eddy covariance fluxes – Part 1: An experimental approach and its interdependence with the time-lag estimation. Atmospheric Measurement Techniques, 2021, 14, 5071-5088.	3.1	7
30	Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia. Atmosphere, 2021, 12, 984.	2.3	6
31	Intermittent Surface Renewals and Methane Hotspots in Natural Peatlands. Boundary-Layer Meteorology, 2021, 180, 407-433.	2.3	4
32	The high-frequency response correction of eddy covariance fluxes – Part 2: An experimental approach for analysing noisy measurements of small fluxes. Atmospheric Measurement Techniques, 2021, 14, 5089-5106.	3.1	2
33	Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland. Atmospheric Measurement Techniques, 2022, 15, 2417-2432.	3.1	0