List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3230415/publications.pdf Version: 2024-02-01



DETED CHEN

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Perovskite/Fullerene Planarâ€Heterojunction Hybrid<br>Solar Cells. Advanced Materials, 2013, 25, 3727-3732.                                                                                                             | 11.1 | 1,352     |
| 2  | Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 2007, 15, 603-612.                                                                                                         | 4.4  | 938       |
| 3  | Nickel Oxide Electrode Interlayer in CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Perovskite/PCBM<br>Planarâ€Heterojunction Hybrid Solar Cells. Advanced Materials, 2014, 26, 4107-4113.                                                                             | 11.1 | 646       |
| 4  | Application of Highly Ordered TiO <sub>2</sub> Nanotube Arrays in Flexible Dye-Sensitized Solar Cells.<br>ACS Nano, 2008, 2, 1113-1116.                                                                                                                                  | 7.3  | 630       |
| 5  | Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process. Nano Letters, 2009, 9, 4221-4227.                                                                                                      | 4.5  | 612       |
| 6  | PbS and CdS Quantum Dotâ€5ensitized Solidâ€5tate Solar Cells: "Old Concepts, New Results― Advanced<br>Functional Materials, 2009, 19, 2735-2742.                                                                                                                         | 7.8  | 458       |
| 7  | Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor. Journal of the American Chemical Society, 2009, 131, 558-562.                                                                                                    | 6.6  | 424       |
| 8  | p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Scientific<br>Reports, 2014, 4, 4756.                                                                                                                                               | 1.6  | 371       |
| 9  | CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity. Journal of Physical Chemistry C, 2008, 112, 11600-11608.                                                                                                                          | 1.5  | 339       |
| 10 | Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for<br>Mesoscopic NiO/CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub> Perovskite Heterojunction Solar<br>Cells. ACS Applied Materials & Interfaces, 2014, 6, 11851-11858. | 4.0  | 319       |
| 11 | Recent Developments in Solidâ€State Dyeâ€Sensitized Solar Cells. ChemSusChem, 2008, 1, 699-707.                                                                                                                                                                          | 3.6  | 286       |
| 12 | Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator. Langmuir, 2009, 25, 7602-7608.                                                                                                                                       | 1.6  | 270       |
| 13 | The 2,2,6,6â€Tetramethylâ€1â€piperidinyloxy Radical: An Efficient, Iodine―Free Redox Mediator for<br>Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2008, 18, 341-346.                                                                                      | 7.8  | 254       |
| 14 | The Influence of Charge Transport and Recombination on the Performance of Dye ensitized Solar<br>Cells. ChemPhysChem, 2009, 10, 290-299.                                                                                                                                 | 1.0  | 253       |
| 15 | Charge collection and pore filling in solid-state dye-sensitized solar cells. Nanotechnology, 2008, 19, 424003.                                                                                                                                                          | 1.3  | 238       |
| 16 | High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Letters, 2009,<br>9, 2487-2492.                                                                                                                                                  | 4.5  | 228       |
| 17 | A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Advanced Materials<br>Interfaces, 2018, 5, 1800882.                                                                                                                                           | 1.9  | 200       |
| 18 | Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Lowâ€Pressure Vaporâ€Assisted Solution Process.<br>Advanced Materials, 2018, 30, e1801401.                                                                                                                      | 11.1 | 154       |

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | NiO <i><sub>x</sub></i> Electrode Interlayer and<br>CH <sub>3</sub> NH <sub>2</sub> /CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Interface<br>Treatment to Markedly Advance Hybrid Perovskiteâ€Based Lightâ€Emitting Diodes. Advanced Materials,<br>2016, 28, 8687-8694. | 11.1 | 147       |
| 20 | Inorganic p-type contact materials for perovskite-based solar cells. Journal of Materials Chemistry A, 2015, 3, 9011-9019.                                                                                                                                                     | 5.2  | 143       |
| 21 | Leadâ€Free Double Perovskites for Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900306.                                                                                                                                                                                         | 3.1  | 127       |
| 22 | Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using<br>Nickel Oxide as p-Type Contact Electrode. Journal of Physical Chemistry Letters, 2016, 7, 1096-1101.                                                                          | 2.1  | 97        |
| 23 | Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chemical Communications, 2015, 51, 15518-15521.                                                                                                                                            | 2.2  | 88        |
| 24 | Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar<br>Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962.                                                                                   | 8.8  | 87        |
| 25 | High voltage and efficient bilayer heterojunction solar cells based on an organic–inorganic hybrid<br>perovskite absorber with a low-cost flexible substrate. Physical Chemistry Chemical Physics, 2014, 16,<br>6033-6040.                                                     | 1.3  | 86        |
| 26 | Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and<br>Perovskite Solar Cells. Energies, 2016, 9, 331.                                                                                                                          | 1.6  | 69        |
| 27 | Synthesis and Structure–Property Correlation in Shapeâ€Controlled ZnO Nanoparticles Prepared by<br>Chemical Vapor Synthesis and their Application in Dyeâ€Sensitized Solar Cells. Advanced Functional<br>Materials, 2009, 19, 875-886.                                         | 7.8  | 67        |
| 28 | Surface modifications of CdS/CdSe co-sensitized TiO2 photoelectrodes for solid-state quantum-dot-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 17534.                                                                                                      | 6.7  | 62        |
| 29 | Porphyrin Dimers as Hole-Transporting Layers for High-Efficiency and Stable Perovskite Solar Cells.<br>ACS Energy Letters, 2018, 3, 1620-1626.                                                                                                                                 | 8.8  | 62        |
| 30 | Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of<br>Al <sub>2</sub> O <sub>3</sub> and NiO Nanoparticles. Angewandte Chemie - International Edition,<br>2014, 53, 9339-9342.                                                                     | 7.2  | 57        |
| 31 | Oxidized Ni/Au Transparent Electrode in Efficient CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub><br>Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. Advanced Materials, 2016, 28,<br>3290-3297.                                                               | 11.1 | 57        |
| 32 | Mixed Cation Thiocyanate-Based Pseudohalide Perovskite Solar Cells with High Efficiency and Stability. ACS Applied Materials & Interfaces, 2017, 9, 2403-2409.                                                                                                                 | 4.0  | 57        |
| 33 | Pseudoâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100818.                                                                                                                                                                                           | 10.2 | 56        |
| 34 | Lowâ€Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Largeâ€Area<br>Module. Advanced Materials Interfaces, 2016, 3, 1500849.                                                                                                                    | 1.9  | 51        |
| 35 | Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting. Journal of Physical Chemistry Letters, 2017, 8, 1824-1830.                                                                                                                                 | 2.1  | 51        |
| 36 | Synergistic Reinforcement of Builtâ€In Electric Fields for Highly Efficient and Stable Perovskite Photovoltaics. Advanced Functional Materials, 2020, 30, 1909755.                                                                                                             | 7.8  | 47        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Energy Harvesting Under Dim-Light Condition With Dye-Sensitized and Perovskite Solar Cells.<br>Frontiers in Chemistry, 2019, 7, 209.                                                                                                           | 1.8 | 44        |
| 38 | Highly stable perovskite solar cells with all-inorganic selective contacts from<br>microwave-synthesized oxide nanoparticles. Journal of Materials Chemistry A, 2017, 5, 25485-25493.                                                          | 5.2 | 41        |
| 39 | Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. Applied Physics Letters, 2015, 107, .                                                        | 1.5 | 40        |
| 40 | Solid-state dye-sensitized solar cells using TiO2 nanotube arrays on FTO glass. Journal of Materials<br>Chemistry, 2009, 19, 5325.                                                                                                             | 6.7 | 39        |
| 41 | Automatic Inverse Design of High-Performance Beam-Steering Metasurfaces via Genetic-type Tree<br>Optimization. Nano Letters, 2021, 21, 4981-4989.                                                                                              | 4.5 | 39        |
| 42 | Microwave-assisted synthesis of titanium dioxide nanocrystalline for efficient dye-sensitized and perovskite solar cells. Solar Energy, 2015, 120, 345-356.                                                                                    | 2.9 | 37        |
| 43 | Functional p-Type, Polymerized Organic Electrode Interlayer in<br>CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub> Perovskite/Fullerene Planar Heterojunction Hybrid<br>Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 24973-24981. | 4.0 | 36        |
| 44 | Over 8% efficient CsSnl <sub>3</sub> -based mesoporous perovskite solar cells enabled by two-step<br>thermal annealing and surface cationic coordination dual treatment. Journal of Materials Chemistry<br>A, 2022, 10, 3642-3649.             | 5.2 | 35        |
| 45 | Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction. APL Materials, 2016, 4, .                                                                                                      | 2.2 | 33        |
| 46 | Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells. Scientific<br>Reports, 2018, 8, 7646.                                                                                                             | 1.6 | 33        |
| 47 | Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al2O3and NiO<br>Nanoparticles. Angewandte Chemie, 2014, 126, 9493-9496.                                                                                         | 1.6 | 31        |
| 48 | Halide perovskite for lowâ€power consumption neuromorphic devices. EcoMat, 2021, 3, e12142.                                                                                                                                                    | 6.8 | 31        |
| 49 | Lowâ€Pressure Vaporâ€Assisted Solution Process for Thiocyanateâ€Based Pseudohalide Perovskite Solar<br>Cells. ChemSusChem, 2016, 9, 2620-2627.                                                                                                 | 3.6 | 30        |
| 50 | Clean and time-effective synthesis of anatase TiO 2 nanocrystalline by microwave-assisted solvothermal method for dye-sensitized solar cells. Journal of Power Sources, 2014, 247, 444-451.                                                    | 4.0 | 24        |
| 51 | p-Type dye-sensitized solar cell based on nickel oxide photocathode with or without Li doping. Journal of Alloys and Compounds, 2014, 584, 142-147.                                                                                            | 2.8 | 24        |
| 52 | Facile one-pot synthesis of Cu2ZnSnS4 quaternary nanoparticles using a microwave-assisted method.<br>CrystEngComm, 2013, 15, 9863.                                                                                                             | 1.3 | 22        |
| 53 | Lead antimony sulfide (Pb5Sb8S17) solid-state quantum dot-sensitized solar cells with an efficiency of over 4%. Journal of Power Sources, 2016, 312, 86-92.                                                                                    | 4.0 | 21        |
| 54 | Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure. AIP<br>Advances, 2018, 8, .                                                                                                                       | 0.6 | 20        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Characteristics of TiNi alloy thin films. Thin Solid Films, 2001, 398-399, 597-601.                                                                                                                                                                     | 0.8 | 19        |
| 56 | Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for<br>Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells. ACS Applied Materials &<br>Interfaces, 2017, 9, 41845-41854.                              | 4.0 | 19        |
| 57 | Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells. Materials Today Energy, 2018, 7, 190-198.                                                               | 2.5 | 19        |
| 58 | Plasma Surface Treatments of TiO2 Photoelectrodes for Use in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2011, 158, K101.                                                                                                       | 1.3 | 18        |
| 59 | Non-color distortion for visible light transmitted tandem solid state dye-sensitized solar cells.<br>Renewable Energy, 2013, 59, 136-140.                                                                                                               | 4.3 | 18        |
| 60 | Improve Hole Collection by Interfacial Chemical Redox Reaction at a Mesoscopic<br>NiO/CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Heterojunction for Efficient Photovoltaic Cells.<br>Advanced Materials Interfaces, 2016, 3, 1600135.             | 1.9 | 18        |
| 61 | Bifacial transparent solid-state dye-sensitized solar cell with sputtered indium-tin-oxide counter electrode. Solar Energy, 2012, 86, 1967-1972.                                                                                                        | 2.9 | 17        |
| 62 | The utilization of IZO transparent conductive oxide for tandem and substrate type perovskite solar cells. Journal Physics D: Applied Physics, 2018, 51, 424002.                                                                                         | 1.3 | 17        |
| 63 | Microwave-Assisted Hydrothermal Synthesis of TiO <sub>2</sub> Mesoporous Beads Having C and/or N<br>Doping for Use in High Efficiency All-Plastic Flexible Dye-Sensitized Solar Cells. Journal of the<br>Electrochemical Society, 2013, 160, H160-H165. | 1.3 | 16        |
| 64 | Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode. Applied Physics Letters, 2018, 112, .                                                                                  | 1.5 | 16        |
| 65 | The Cu/Cu <sub>2</sub> O nanocomposite as a p-type transparent-conductive-oxide for efficient bifacial-illuminated perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 6280-6286.                                                        | 2.7 | 16        |
| 66 | Recent progress in inorganic tin perovskite solar cells. Materials Today Energy, 2022, 23, 100891.                                                                                                                                                      | 2.5 | 16        |
| 67 | Microwave-assisted hydrothermal synthesis of TiO2 spheres with efficient photovoltaic performance for dye-sensitized solar cells. Journal of Nanoparticle Research, 2013, 15, 1.                                                                        | 0.8 | 15        |
| 68 | Effects of microwave condition on the formation and characteristics of TiO2 submicron-sized beads and its use in all-plastic flexible dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2016, 144, 7-13.                              | 3.0 | 15        |
| 69 | Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process.<br>Journal of Power Sources, 2013, 225, 257-262.                                                                                                  | 4.0 | 14        |
| 70 | Segregation-free bromine-doped perovskite solar cells for IoT applications. RSC Advances, 2019, 9, 32833-32838.                                                                                                                                         | 1.7 | 13        |
| 71 | Hemispherical Cesium Lead Bromide Perovskite Single-Mode Microlasers with High-Quality Factors and Strong Purcell Enhancement. ACS Applied Materials & Interfaces, 2021, 13, 13556-13564.                                                               | 4.0 | 11        |
| 72 | One- and Two-Photon Excited Photoluminescence and Suppression of Thermal Quenching of CsSnBr <sub>3</sub> Microsquare and Micropyramid. ACS Nano, 2021, 15, 19613-19620.                                                                                | 7.3 | 11        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Dependence of compositions and crystallization behaviors of dc-sputtered TiNi thin films on the deposition conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2382-2387.                                  | 0.9 | 10        |
| 74 | Ultra-Thin TiO2 Layers for Enhancing the Conversion Efficiency of Flexible Dye-Sensitized Solar Cells.<br>Journal of the Electrochemical Society, 2011, 158, H1252.                                                                                  | 1.3 | 10        |
| 75 | The use of sputter deposited TiN thin film as a surface conducting layer on the counter electrode of flexible plastic dye-sensitized solar cells. Surface and Coatings Technology, 2013, 231, 140-143.                                               | 2.2 | 10        |
| 76 | Porphyrinâ€Based Simple and Practical Dopantâ€Free Holeâ€Transporting Materials for Efficient Perovskite<br>Solar Cells Using TiO <sub>2</sub> Semiconductors. Solar Rrl, 2020, 4, 2000119.                                                          | 3.1 | 9         |
| 77 | Double-side operable perovskite photodetector using Cu/Cu <sub>2</sub> O as a hole transport layer.<br>Optics Express, 2019, 27, 24900.                                                                                                              | 1.7 | 9         |
| 78 | Clean and flexible synthesis of TiO2 nanocrystallites for dye-sensitized and perovskite solar cells.<br>Solar Energy Materials and Solar Cells, 2017, 159, 336-344.                                                                                  | 3.0 | 8         |
| 79 | Low-temperature growth of uniform ultrathin TiO2 blocking layer for efficient perovskite solar cell.<br>Organic Electronics, 2019, 75, 105379.                                                                                                       | 1.4 | 6         |
| 80 | Characterize and Retard the Impact of the Biasâ€Induced Mobile Ions in<br>CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Perovskite Lightâ€Emitting Diodes. Advanced Optical<br>Materials, 2022, 10, .                                            | 3.6 | 5         |
| 81 | A novel porous Ti/TiN/Ti thin film as a working electrode for back-contact, monolithic and non-TCO dye-sensitized solar cells. Sustainable Energy and Fuels, 2017, 1, 851-858.                                                                       | 2.5 | 4         |
| 82 | Improved conversion efficiency of perovskite solar cells converted from thermally deposited lead<br>iodide with dimethyl sulfoxide-treated poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate).<br>Organic Electronics, 2019, 73, 266-272.      | 1.4 | 4         |
| 83 | High-Performance Perovskite-Based Light-Emitting Diodes from the Conversion of Amorphous<br>Spin-Coated Lead Bromide with Phenethylamine Doping. ACS Omega, 2020, 5, 8697-8706.                                                                      | 1.6 | 4         |
| 84 | Effects of Choline Chloride in Lead Bromide Layer and Methylammonium Bromide Precursor on<br>Perovskite Conversion and Optoelectronic Properties of Perovskite-Based Light-Emitting Diodes. ACS<br>Applied Electronic Materials, 2021, 3, 2035-2043. | 2.0 | 4         |
| 85 | Effect of the Large-Size A-Site Cation on the Crystal Growth and Phase Distribution of 2D/3D Mixed Perovskite Films via a Low-Pressure Vapor-Assisted Solution Process. Journal of Physical Chemistry C, 0, , .                                      | 1.5 | 4         |
| 86 | The Effects of Solvent on Doctorâ€Bladed Perovskite Light Absorber under Ambient Process Condition<br>for Multiple ation Mixed Halide Perovskites. Energy Technology, 2021, 9, .                                                                     | 1.8 | 3         |
| 87 | Investigation of the mechanism of a facile method for ammonia treatment to effectively tune the morphology and conductivity of PEDOT:PSS films. Organic Electronics, 2021, 91, 106081.                                                               | 1.4 | 3         |
| 88 | Conversion efficiency enhancement of methylammonium lead triiodide perovskite solar cells<br>converted from thermally deposited lead iodide via thin methylammonium iodide interlayer. Organic<br>Electronics, 2020, 82, 105713.                     | 1.4 | 2         |
| 89 | Back-contact perovskite solar cells. Semiconductor Science and Technology, 2021, 36, 083001.                                                                                                                                                         | 1.0 | 2         |
| 90 | Formamide iodide: a new cation additive for inhibiting Î <sup>-</sup> phase formation of formamidinium lead iodide perovskite. Materials Advances, 2021, 2, 2272-2277.                                                                               | 2.6 | 2         |

0

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Observation of strain-induced phonon mode splitting in the tetragonal hybrid halide perovskite.<br>Japanese Journal of Applied Physics, 2017, 56, 110307.                                    | 0.8 | 1         |
| 92 | P-Type and Inorganic Hole Transporting Materials for Perovskite Solar Cells. Series on Chemistry,<br>Energy and the Environment, 2017, , 63-109.                                             | 0.3 | 1         |
| 93 | The Photovoltaics and Nonlinear optical properties of 2D/3D Hybrid Perovskite. , 0, , .                                                                                                      |     | 1         |
| 94 | The Influence of Particle Sizes on the Optical Characteristics of Nanocrystalline TiO2 Films for Dye-Sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2008, 1101, 1. | 0.1 | 0         |
| 95 | Microwave-assisted synthesis of nanocrystalline TiO <sub>2</sub> for dye-sensitized solar cells.<br>Proceedings of SPIE, 2012, , .                                                           | 0.8 | 0         |
| 96 | Low-pressure hybrid chemical vapor deposition for efficient perovskite solar cells and module. , 2016, , .                                                                                   |     | 0         |
| 97 | Mapping Highly Efficient Mixed-cation Pseudohalide-perovskite Solar Cells with a Scanning<br>Transmission X-ray Microscope. Microscopy and Microanalysis, 2018, 24, 462-463.                 | 0.2 | 0         |
| 98 | Cooling dynamics of electrons in MAPbBr3 probed in the deep-UV. EPJ Web of Conferences, 2019, 205, 05020.                                                                                    | 0.1 | 0         |
| 99 | Functional inorganic selective contact layers for perovskite solar cell application. , 0, , .                                                                                                |     | 0         |
|    |                                                                                                                                                                                              |     |           |

100 Pseudohalide Perovskite Solar Cells. , 0, , .