
## **Stefaan Poedts**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3230052/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Self-similarity for astrophysical MHD transients revisited. Advances in Space Research, 2022, 69, 474-482.                                                                                                                                                         | 1.2 | 0         |
| 2  | Study of the propagation, in situ signatures, and geoeffectiveness of shear-induced coronal mass ejections in different solar winds. Astronomy and Astrophysics, 2022, 658, A56.                                                                                   | 2.1 | 5         |
| 3  | Temperature Anisotropy Instabilities Stimulated by the Solar Wind Suprathermal Populations.<br>Frontiers in Astronomy and Space Sciences, 2022, 8, .                                                                                                               | 1.1 | 12        |
| 4  | Propagation of the Alfvén Wave and Induced Perturbations in the Vicinity of a 3D Proper Magnetic<br>Null Point. Astrophysical Journal, 2022, 924, 126.                                                                                                             | 1.6 | 1         |
| 5  | Comparing the Heliospheric Cataloging, Analysis, and Techniques Service (HELCATS) Manual and<br>Automatic Catalogues of Coronal Mass Ejections Using Solar Terrestrial Relations<br>Observatory/Heliospheric Imager (STEREO/HI) Data. Solar Physics, 2022, 297, 1. | 1.0 | 3         |
| 6  | Toward a Realistic Evaluation of Transport Coefficients in Non-equilibrium Space Plasmas.<br>Astrophysical Journal, 2022, 927, 159.                                                                                                                                | 1.6 | 2         |
| 7  | Categorization model of moving small-scale intensity enhancements in solar active regions.<br>Astronomy and Astrophysics, 2022, 662, A30.                                                                                                                          | 2.1 | 1         |
| 8  | How the area of solar coronal holes affects the properties of high-speed solar wind streams near<br>Earth: An analytical model. Astronomy and Astrophysics, 2022, 659, A190.                                                                                       | 2.1 | 10        |
| 9  | ICARUS, a new inner heliospheric model with a flexible grid. Astronomy and Astrophysics, 2022, 662, A50.                                                                                                                                                           | 2.1 | 10        |
| 10 | Dynamic Time Warping as a Means of Assessing Solar Wind Time Series. Astrophysical Journal, 2022, 927, 187.                                                                                                                                                        | 1.6 | 10        |
| 11 | Effects of mesh topology on MHD solution features in coronal simulations. Journal of Plasma<br>Physics, 2022, 88, .                                                                                                                                                | 0.7 | 9         |
| 12 | Interaction of coronal mass ejections and the solar wind. Astronomy and Astrophysics, 2022, 663, A32.                                                                                                                                                              | 2.1 | 2         |
| 13 | Analysis of Voyager 1 and Voyager 2 in situ CME observations. Advances in Space Research, 2022, 70, 1684-1719.                                                                                                                                                     | 1.2 | 2         |
| 14 | r-adaptive algorithms for supersonic flows with high-order Flux Reconstruction methods. Computer<br>Physics Communications, 2022, 276, 108373.                                                                                                                     | 3.0 | 1         |
| 15 | Mixing the Solar Wind Proton and Electron Scales. Theory and 2D-PIC Simulations of Firehose<br>Instability. Astrophysical Journal, 2022, 930, 158.                                                                                                                 | 1.6 | 4         |
| 16 | Implementation and validation of the FRi3D flux rope model in EUHFORIA. Advances in Space Research, 2022, 70, 1641-1662.                                                                                                                                           | 1.2 | 17        |
| 17 | Over-expansion of coronal mass ejections modelled using 3D MHD EUHFORIA simulations. Advances in<br>Space Research, 2022, 70, 1663-1683.                                                                                                                           | 1.2 | 8         |
| 18 | Case study on the identification and classification of small-scale flow patterns in flaring active region. Astronomy and Astrophysics, 2021, 645, A52.                                                                                                             | 2.1 | 2         |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | r-adaptive Mesh Algorithms with High-order Flux Reconstruction Scheme for High-speed Flows. , 2021, , .                                                                                                 |     | 1         |
| 20 | Quo vadis, European Space Weather community?. Journal of Space Weather and Space Climate, 2021, 11, 26.                                                                                                 | 1.1 | 1         |
| 21 | A Self-consistent Simulation of Proton Acceleration and Transport Near a High-speed Solar Wind Stream. Astrophysical Journal Letters, 2021, 908, L26.                                                   | 3.0 | 20        |
| 22 | Over-expansion of a coronal mass ejection generates sub-Alfvénic plasma conditions in the solar wind at Earth. Astronomy and Astrophysics, 2021, 647, A149.                                             | 2.1 | 4         |
| 23 | Implementing the MULTI-VP coronal model in EUHFORIA: Test case results and comparisons with the WSA coronal model. Astronomy and Astrophysics, 2021, 648, A35.                                          | 2.1 | 21        |
| 24 | Two-fluid Modeling of Acoustic Wave Propagation in Gravitationally Stratified Isothermal Media.<br>Astrophysical Journal, 2021, 911, 119.                                                               | 1.6 | 18        |
| 25 | Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA. Astronomy and Astrophysics, 2021, 649, A69.                                                                     | 2.1 | 15        |
| 26 | Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft. Astrophysical Journal Letters, 2021, 916, L15.                                 | 3.0 | 14        |
| 27 | 3D numerical simulations of propagating two-fluid, torsional Alfvén waves and heating of a partially ionized solar chromosphere. Monthly Notices of the Royal Astronomical Society, 2021, 506, 989-996. | 1.6 | 5         |
| 28 | Analysis of Deformation and Erosion during CME Evolution. Geosciences (Switzerland), 2021, 11, 314.                                                                                                     | 1.0 | 4         |
| 29 | Generation of interplanetary type II radio emission. Astronomy and Astrophysics, 2021, 654, A64.                                                                                                        | 2.1 | 16        |
| 30 | Evidence for local particle acceleration in the first recurrent galactic cosmic ray depression observed by Solar Orbiter. Astronomy and Astrophysics, 2021, 656, L10.                                   | 2.1 | 2         |
| 31 | Modelling a multi-spacecraft coronal mass ejection encounter with EUHFORIA. Astronomy and Astrophysics, 2021, 652, A27.                                                                                 | 2.1 | 20        |
| 32 | Spatial variation in the periods of ion and neutral waves in a solar magnetic arcade. Astronomy and Astrophysics, 2021, 652, A88.                                                                       | 2.1 | 4         |
| 33 | Transport coefficients enhanced by suprathermal particles in nonequilibrium heliospheric plasmas.<br>Astronomy and Astrophysics, 2021, 654, A99.                                                        | 2.1 | 5         |
| 34 | Chromospheric heating and generation of plasma outflows by impulsively generated two-fluid magnetoacoustic waves. Astronomy and Astrophysics, 2021, 652, A124.                                          | 2.1 | 9         |
| 35 | Eigenspectra of solar active region long-period oscillations. Astronomy and Astrophysics, 2021, 653,<br>A39.                                                                                            | 2.1 | 1         |
| 36 | Toward a general quasi-linear approach for the instabilities of bi-Kappa plasmas. Whistler instability.<br>Plasma Physics and Controlled Fusion, 2021, 63, 025011.                                      | 0.9 | 13        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Editorial: Data-Driven MHD - Novel Applications to the Solar Atmosphere. Frontiers in Astronomy and Space Sciences, 2021, 8, .                                                                                     | 1.1 | 0         |
| 38 | Plasma Flow Generation due to the Nonlinear Alfvén Wave Propagation around a 3D Magnetic Null<br>Point. Astrophysical Journal, 2021, 922, 123.                                                                     | 1.6 | 2         |
| 39 | Proton-Alpha Drift Instability of Electromagnetic Ion-Cyclotron Modes: Quasilinear Development.<br>Physics, 2021, 3, 1175-1189.                                                                                    | 0.5 | 2         |
| 40 | Advanced Interpretation of Waves and Instabilities in Space Plasmas. Astrophysics and Space Science<br>Library, 2021, , 185-218.                                                                                   | 1.0 | 2         |
| 41 | The impact of coronal hole characteristics and solar cycle activity in reconstructing coronal holes with EUHFORIA. Journal of Physics: Conference Series, 2020, 1548, 012004.                                      | 0.3 | 3         |
| 42 | A new class of discontinuous solar wind solutions. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1023-1034.                                                                                        | 1.6 | 4         |
| 43 | Thermal conduction effects on formation of chromospheric solar tadpole-like jets. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3329-3334.                                                         | 1.6 | 3         |
| 44 | How Alfvén waves induce compressive flows in the neighborhood of a 2.5D magnetic null-point.<br>Scientific Reports, 2020, 10, 15603.                                                                               | 1.6 | 9         |
| 45 | Characteristics of solar wind suprathermal halo electrons. Astronomy and Astrophysics, 2020, 642, A130.                                                                                                            | 2.1 | 14        |
| 46 | Fire-hose instability of inhomogeneous plasma flows with heat fluxes. Physics of Plasmas, 2020, 27,<br>112901.                                                                                                     | 0.7 | 3         |
| 47 | Improving Predictions of High‣atitude Coronal Mass Ejections Throughout the Heliosphere. Space<br>Weather, 2020, 18, e2019SW002246.                                                                                | 1.3 | 5         |
| 48 | Electromagnetic instabilities of low-beta alpha/proton beams in space plasmas. Astrophysics and Space<br>Science, 2020, 365, 1.                                                                                    | 0.5 | 2         |
| 49 | Determination of the solar rotation parameters via orthogonal polynomials. Advances in Space<br>Research, 2020, 65, 1843-1851.                                                                                     | 1.2 | 2         |
| 50 | Solar Flare Prediction Using Magnetic Field Diagnostics above the Photosphere. Astrophysical<br>Journal, 2020, 896, 119.                                                                                           | 1.6 | 20        |
| 51 | On the Dependency between the Peak Velocity of High-speed Solar Wind Streams near Earth and the<br>Area of Their Solar Source Coronal Holes. Astrophysical Journal Letters, 2020, 897, L17.                        | 3.0 | 13        |
| 52 | Numerical simulations of the lower solar atmosphere heating by two-fluid nonlinear Alfvén waves.<br>Astronomy and Astrophysics, 2020, 639, A45.                                                                    | 2.1 | 11        |
| 53 | CME–CME Interactions as Sources of CME Geoeffectiveness: The Formation of the Complex Ejecta and<br>Intense Geomagnetic Storm in 2017 Early September. Astrophysical Journal, Supplement Series, 2020,<br>247, 21. | 3.0 | 78        |
| 54 | The effect of drifts on the decay phase of SEP events. Astronomy and Astrophysics, 2020, 634, A82.                                                                                                                 | 2.1 | 15        |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Virtual Space Weather Modelling Centre. Journal of Space Weather and Space Climate, 2020, 10, 14.                                                                       | 1.1 | 11        |
| 56 | Low Geoâ€Effectiveness of Fast Halo CMEs Related to the 12 Xâ€Class Flares in 2002. Journal of<br>Geophysical Research: Space Physics, 2020, 125, e2019JA027529.            | 0.8 | 11        |
| 57 | Using radio triangulation to understand the origin of two subsequent type II radio bursts. Astronomy and Astrophysics, 2020, 639, A56.                                      | 2.1 | 19        |
| 58 | Numerical simulations of shear-induced consecutive coronal mass ejections. Astronomy and Astrophysics, 2020, 637, A77.                                                      | 2.1 | 6         |
| 59 | Electromagnetic Ion–Ion Instabilities in Space Plasmas: Effects of Suprathermal Populations.<br>Astrophysical Journal, 2020, 899, 20.                                       | 1.6 | 11        |
| 60 | Alternative High-plasma Beta Regimes of Electron Heat-flux Instabilities in the Solar Wind.<br>Astrophysical Journal Letters, 2020, 900, L25.                               | 3.0 | 36        |
| 61 | Twisted waves in symmetric and asymmetric bi-ion kappa-distributed plasmas. Physics of Plasmas, 2020, 27, .                                                                 | 0.7 | 6         |
| 62 | EUropean Heliospheric FORecasting Information Asset 2.0. Journal of Space Weather and Space Climate, 2020, 10, 57.                                                          | 1.1 | 21        |
| 63 | Plasmoids and Resulting Blobs due to the Interaction of Magnetoacoustic Waves with a 2.5D Magnetic<br>Null Point. Astrophysical Journal, 2020, 902, 11.                     | 1.6 | 6         |
| 64 | Domain of Influence Analysis: Implications for Data Assimilation in Space Weather Forecasting.<br>Frontiers in Astronomy and Space Sciences, 2020, 7, .                     | 1.1 | 3         |
| 65 | Slurm: Fluid particle-in-cell code for plasma modeling. Computer Physics Communications, 2019, 235, 16-24.                                                                  | 3.0 | 7         |
| 66 | The evolution of coronal mass ejections in the inner heliosphere: Implementing the spheromak model with EUHFORIA. Astronomy and Astrophysics, 2019, 627, A111.              | 2.1 | 59        |
| 67 | Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. Astronomy and Astrophysics, 2019, 626, A122.                                                | 2.1 | 72        |
| 68 | Multipoint Observations of the June 2012 Interacting Interplanetary Flux Ropes. Frontiers in Astronomy and Space Sciences, 2019, 6, .                                       | 1.1 | 29        |
| 69 | Whistler instability stimulated by the suprathermal electrons present in space plasmas. Astrophysics and Space Science, 2019, 364, 1.                                       | 0.5 | 21        |
| 70 | Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for the Solar<br>Orbiter and Parker Solar Probe. Astrophysical Journal, 2019, 884, 179.  | 1.6 | 9         |
| 71 | Particle-in-cell Simulations of the Whistler Heat-flux Instability in Solar Wind Conditions.<br>Astrophysical Journal Letters, 2019, 882, L8.                               | 3.0 | 21        |
| 72 | Quasilinear approach of the cumulative whistler instability in fast solar wind: Constraints of electron temperature anisotropy. Astronomy and Astrophysics, 2019, 627, A76. | 2.1 | 16        |

| #  | Article                                                                  | IF | CITATIONS |
|----|--------------------------------------------------------------------------|----|-----------|
| 73 | Elements of plasma physics. , 2019, , 27-65.                             |    | 6         |
| 74 | â€~Derivation' of the macroscopic equations. , 2019, , 66-102.           |    | 0         |
| 75 | The MHD model. , 2019, , 105-146.                                        |    | 0         |
| 76 | Waves and characteristics. , 2019, , 147-180.                            |    | 0         |
| 77 | Spectral theory. , 2019, , 181-230.                                      |    | Ο         |
| 78 | Waves and instabilities of inhomogeneous plasmas. , 2019, , 233-291.     |    | 0         |
| 79 | Magnetic structures and dynamics of the solar system. , 2019, , 292-324. |    | 0         |
| 80 | Cylindrical plasmas. , 2019, , 325-371.                                  |    | 0         |
| 81 | Initial value problem and wave damping. , 2019, , 372-398.               |    | 0         |
| 82 | Resonant absorption and wave heating. , 2019, , 399-434.                 |    | 0         |
| 83 | Waves and instabilities of stationary plasmas. , 2019, , 437-472.        |    | 0         |
| 84 | Shear flow and rotation. , 2019, , 473-524.                              |    | 0         |
| 85 | Resistive plasma dynamics. , 2019, , 525-568.                            |    | Ο         |
| 86 | Computational linear MHD. , 2019, , 569-614.                             |    | 0         |
| 87 | Static equilibrium of toroidal plasmas. , 2019, , 617-666.               |    | 0         |
| 88 | Linear dynamics of static toroidal plasmas. , 2019, , 667-706.           |    | 0         |
| 89 | Linear dynamics of toroidal plasmas with flow. , 2019, , 707-746.        |    | 0         |
| 90 | Turbulence in incompressible magneto–fluids. , 2019, , 749-779.          |    | 0         |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Computational nonlinear MHD. , 2019, , 780-836.                                                                                                                                  |     | 0         |
| 92  | Transonic MHD flows and shocks. , 2019, , 837-878.                                                                                                                               |     | 0         |
| 93  | Ideal MHD in special relativity. , 2019, , 879-918.                                                                                                                              |     | 0         |
| 94  | Multipoint Study of Successive Coronal Mass Ejections Driving Moderate Disturbances at 1 au.<br>Astrophysical Journal, 2019, 878, 37.                                            | 1.6 | 21        |
| 95  | Comparative analysis of solar radio bursts before and during CME propagation. Astronomy and Astrophysics, 2019, 625, A63.                                                        | 2.1 | 2         |
| 96  | Quasi-linear approach of the whistler heat-flux instability in the solar wind. Monthly Notices of the<br>Royal Astronomical Society, 2019, 486, 4498-4507.                       | 1.6 | 27        |
| 97  | Plasma heating by magnetoacoustic wave propagation in the vicinity of a 2.5D magnetic null-point.<br>Astronomy and Astrophysics, 2019, 623, A81.                                 | 2.1 | 8         |
| 98  | Particle-in-cell Simulations of Firehose Instability Driven by Bi-Kappa Electrons. Astrophysical Journal<br>Letters, 2019, 873, L20.                                             | 3.0 | 30        |
| 99  | The Interplay of the Solar Wind Core and Suprathermal Electrons: A Quasilinear Approach for<br>Firehose Instability. Astrophysical Journal, 2019, 871, 237.                      | 1.6 | 18        |
| 100 | Interplanetary spread of solar energetic protons near a high-speed solar wind stream. Astronomy and<br>Astrophysics, 2019, 624, A47.                                             | 2.1 | 14        |
| 101 | Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. Astronomy and Astrophysics, 2019, 622, A28.         | 2.1 | 33        |
| 102 | A GPU-enabled implicit Finite Volume solver for the ideal two-fluid plasma model on unstructured grids. Computer Physics Communications, 2019, 239, 16-32.                       | 3.0 | 12        |
| 103 | Reconstructing Coronal Hole Areas With EUHFORIA and Adapted WSA Model: Optimizing the Model<br>Parameters. Journal of Geophysical Research: Space Physics, 2019, 124, 8280-8297. | 0.8 | 29        |
| 104 | Spreading protons in the heliosphere: a note on cross-field diffusion effects. Journal of Physics:<br>Conference Series, 2019, 1332, 012018.                                     | 0.3 | 3         |
| 105 | Assessing the Performance of EUHFORIA Modeling the Background Solar Wind. Solar Physics, 2019, 294, 170.                                                                         | 1.0 | 29        |
| 106 | Effect of the solar wind density on the evolution of normal and inverse coronal mass ejections.<br>Astronomy and Astrophysics, 2019, 632, A89.                                   | 2.1 | 14        |
| 107 | Forecasting space weather with EUHFORIA in the virtual space weather modeling centre. Plasma<br>Physics and Controlled Fusion, 2019, 61, 014011.                                 | 0.9 | 3         |
| 108 | The Magnetic Morphology of Magnetic Clouds: Multi-spacecraft Investigation of Twisted and Writhed<br>Coronal Mass Ejections. Astrophysical Journal, 2019, 870, 100.              | 1.6 | 24        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Firehose instabilities triggered by the solar wind suprathermal electrons. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5642-5648.                                                 | 1.6 | 33        |
| 110 | Temperature anisotropy instabilities stimulated by the interplay of the core and halo electrons in space plasmas. Physics of Plasmas, 2018, 25, .                                                   | 0.7 | 22        |
| 111 | Stimulated Mirror Instability From the Interplay of Anisotropic Protons and Electrons, and their<br>Suprathermal Populations. Journal of Geophysical Research: Space Physics, 2018, 123, 1754-1766. | 0.8 | 15        |
| 112 | Halo coronal mass ejections during Solar Cycle 24: reconstruction of the global scenario and geoeffectiveness. Journal of Space Weather and Space Climate, 2018, 8, A09.                            | 1.1 | 22        |
| 113 | Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points. Astrophysical Journal Letters, 2018, 855, L21.                                                                             | 3.0 | 9         |
| 114 | On the effects of suprathermal populations in dusty plasmas: The case of dust-ion-acoustic waves.<br>Planetary and Space Science, 2018, 156, 130-138.                                               | 0.9 | 17        |
| 115 | Quasi-electrostatic twisted waves in Lorentzian dusty plasmas. Planetary and Space Science, 2018, 156, 139-146.                                                                                     | 0.9 | 9         |
| 116 | Ultrahigh-resolution model of a breakout CME embedded in the solar wind. Astronomy and Astrophysics, 2018, 620, A57.                                                                                | 2.1 | 20        |
| 117 | Suprathermal Spontaneous Emissions in κ-distributed Plasmas. Astrophysical Journal Letters, 2018, 868,<br>L25.                                                                                      | 3.0 | 11        |
| 118 | A Versatile Numerical Method for the Multi-Fluid Plasma Model in Partially- and Fully-Ionized Plasmas.<br>Journal of Physics: Conference Series, 2018, 1031, 012015.                                | 0.3 | 6         |
| 119 | EUHFORIA: European heliospheric forecasting information asset. Journal of Space Weather and Space Climate, 2018, 8, A35.                                                                            | 1.1 | 235       |
| 120 | On the Observational Properties of the Decameter Striae. , 2018, , .                                                                                                                                |     | 1         |
| 121 | Clarifying the solar wind heat flux instabilities. Monthly Notices of the Royal Astronomical Society, 2018, 480, 310-319.                                                                           | 1.6 | 49        |
| 122 | Generation and evolution of anisotropic turbulence and related energy transfer in drifting proton-alpha plasmas. Astronomy and Astrophysics, 2018, 613, A10.                                        | 2.1 | 3         |
| 123 | MHD Kelvin-Helmholtz instability in the anisotropic solar wind plasma. Physics of Plasmas, 2018, 25, .                                                                                              | 0.7 | 9         |
| 124 | Interferometric Observations of the Quiet Sun at 20 and 25 MHz in May 2014. Solar Physics, 2018, 293, 1.                                                                                            | 1.0 | 3         |
| 125 | Association between Tornadoes and Instability of Hosting Prominences. Astrophysical Journal, 2018,<br>861, 112.                                                                                     | 1.6 | 4         |
| 126 | Effect of the Initial Shape of Coronal Mass Ejections on 3â€D MHD Simulations and Geoeffectiveness<br>Predictions. Space Weather, 2018, 16, 754-771.                                                | 1.3 | 46        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Fully-implicit finite volume method for the ideal two-fluid plasma model. Computer Physics<br>Communications, 2018, 231, 31-44.                                                                                  | 3.0 | 23        |
| 128 | Beaming electromagnetic (or heat-flux) instabilities from the interplay with the electron temperature anisotropies. Physics of Plasmas, 2018, 25, .                                                              | 0.7 | 31        |
| 129 | How is the Jovian main auroral emission affected by the solar wind?. Journal of Geophysical Research:<br>Space Physics, 2017, 122, 1960-1978.                                                                    | 0.8 | 39        |
| 130 | Long-period oscillations of active region patterns: least-squares mapping on second-order curves.<br>Astronomy and Astrophysics, 2017, 597, A93.                                                                 | 2.1 | 6         |
| 131 | Multi-fluid Modeling of Magnetosonic Wave Propagation in the Solar Chromosphere: Effects of<br>Impact Ionization and Radiative Recombination. Astrophysical Journal, 2017, 836, 197.                             | 1.6 | 37        |
| 132 | Effect of Radiation on Chromospheric Magnetic Reconnection: Reactive and Collisional Multi-fluid<br>Simulations. Astrophysical Journal, 2017, 842, 117.                                                          | 1.6 | 29        |
| 133 | Dual Maxwellian-Kappa modeling of the solar wind electrons: new clues on the temperature of Kappa populations. Astronomy and Astrophysics, 2017, 602, A44.                                                       | 2.1 | 59        |
| 134 | Quasi-oscillatory dynamics observed in ascending phase of the flare on March 6, 2012. Astronomy and Astrophysics, 2017, 600, A67.                                                                                | 2.1 | 3         |
| 135 | Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas. Physics of<br>Plasmas, 2017, 24, 033701.                                                                                   | 0.7 | 19        |
| 136 | Ion acoustic wave damping in a non-Maxwellian bi-ion electron plasma in the presence of dust. Physics of Plasmas, 2017, 24, 093708.                                                                              | 0.7 | 5         |
| 137 | Solar signatures and eruption mechanism of the August 14, 2010 coronal mass ejection (CME). Journal of Space Weather and Space Climate, 2017, 7, A7.                                                             | 1.1 | 12        |
| 138 | Statistical properties of coronal hole rotation rates: Are they linked to the solar interior?.<br>Astronomy and Astrophysics, 2017, 603, A134.                                                                   | 2.1 | 24        |
| 139 | Solar Illumination Control of the Polar Wind. Journal of Geophysical Research: Space Physics, 2017, 122, 11,468-11,480.                                                                                          | 0.8 | 6         |
| 140 | Shaping the solar wind temperature anisotropy by the interplay of electron and proton instabilities.<br>Astrophysics and Space Science, 2017, 362, 1.                                                            | 0.5 | 25        |
| 141 | A new Particle-in-Cell method for modeling magnetized fluids. Computer Physics Communications, 2017, 210, 79-91.                                                                                                 | 3.0 | 5         |
| 142 | Firehose constraints of the bi-Kappa-distributed electrons: a zero-order approach for the<br>suprathermal electrons in the solar wind. Monthly Notices of the Royal Astronomical Society, 2017,<br>464, 564-571. | 1.6 | 39        |
| 143 | The decameter spikes as a tool for the coronal plasma parameters determination. , 2017, , .                                                                                                                      |     | 0         |
| 144 | On the Evolution of Pre-Flare Patterns of a 3-Dimensional Model of AR 11429. Proceedings of the<br>International Astronomical Union, 2017, 13, 294-297.                                                          | 0.0 | 1         |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for<br>Power-Law-Distributed Solar Data. Solar Physics, 2016, 291, 1561-1576.                                  | 1.0 | 13        |
| 146 | Computational Multi-Fluid Model for Partially Ionized and Magnetized Plasma. , 2016, , .                                                                                                             |     | 0         |
| 147 | Self-consistent evolution models for slow CMEs up to 1 AU. AIP Conference Proceedings, 2016, , .                                                                                                     | 0.3 | 2         |
| 148 | MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE<br>ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY. Astrophysical Journal, 2016, 832, 64.                    | 1.6 | 18        |
| 149 | RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14–24: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR. Astrophysical Journal, 2016, 826, 55.                                         | 1.6 | 45        |
| 150 | The interplay of the solar wind proton core and halo populations: EMIC instability. Journal of Geophysical Research: Space Physics, 2016, 121, 6031-6047.                                            | 0.8 | 27        |
| 151 | A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes. Journal of Computational Physics, 2016, 318, 252-276.                      | 1.9 | 33        |
| 152 | The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations. Solar Physics, 2016, 291, 2165-2179.                                                         | 1.0 | 81        |
| 153 | Evolution of relative drifts and temperature anisotropies in expanding collisionless plasmas—1.5D vs.<br>2.5D hybrid simulations. AlP Conference Proceedings, 2016, , .                              | 0.3 | 1         |
| 154 | Preferential heating of oxygen 5+ ions by finite-amplitude oblique Alfvén waves. AlP Conference<br>Proceedings, 2016, , .                                                                            | 0.3 | 0         |
| 155 | The Storm of Decameter Spikes During the Event of 14 June 2012. Solar Physics, 2016, 291, 211-228.                                                                                                   | 1.0 | 14        |
| 156 | Effects of suprathermal electrons on the proton temperature anisotropy in space plasmas:<br>Electromagnetic ion-cyclotron instability. Astrophysics and Space Science, 2016, 361, 1.                 | 0.5 | 16        |
| 157 | A small mission concept to the Sun–Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 146, 171-185. | 0.6 | 39        |
| 158 | SEPEM: A tool for statistical modeling the solar energetic particle environment. Space Weather, 2015, 13, 406-426.                                                                                   | 1.3 | 45        |
| 159 | DYNAMICS OF A SOLAR PROMINENCE TORNADO OBSERVED BY <i>SDO</i> /AIA ON 2012 NOVEMBER 7–8.<br>Astrophysical Journal, 2015, 810, 89.                                                                    | 1.6 | 10        |
| 160 | DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF<br>ALPHA PARTICLES IN THE SOLAR WIND. Astrophysical Journal, 2015, 814, 33.                                   | 1.6 | 15        |
| 161 | Quasilinear saturation of the aperiodic ordinary mode streaming instability. Physics of Plasmas, 2015, 22, .                                                                                         | 0.7 | 12        |
| 162 | Modelling large solar proton events with the shock-and-particle model. Journal of Space Weather and Space Climate, 2015, 5, A12.                                                                     | 1.1 | 24        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Fine and Superfine Structure of the Decameter–Hectometer Type II Burst on 7 June 2011. Solar Physics, 2015, 290, 2031-2042.                                                                                                                                    | 1.0 | 15        |
| 164 | Simulations of the Earth's magnetosphere embedded in subâ€Alfvénic solar wind on 24 and 25 May 2002.<br>Journal of Geophysical Research: Space Physics, 2015, 120, 8517-8528.                                                                                  | 0.8 | 15        |
| 165 | Coronal Heating & Solar Wind Acceleration by Drift Waves. Journal of Physics: Conference Series, 2015, 642, 012021.                                                                                                                                            | 0.3 | 0         |
| 166 | Destabilizing effects of the suprathermal populations in the solar wind. Astronomy and Astrophysics, 2015, 582, A124.                                                                                                                                          | 2.1 | 76        |
| 167 | Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012. Astronomy and Astrophysics, 2015, 577, A136.                                                                                                                                 | 2.1 | 24        |
| 168 | Numerical Simulations of a Flux Rope Ejection. Journal of Astrophysics and Astronomy, 2015, 36, 123-155.                                                                                                                                                       | 0.4 | 4         |
| 169 | Towards realistic parametrization of the kinetic anisotropy and the resulting instabilities in space<br>plasmas. Electromagnetic electron–cyclotron instability in the solar wind. Monthly Notices of the<br>Royal Astronomical Society, 2015, 446, 3022-3033. | 1.6 | 36        |
| 170 | Constraints for the aperiodic O-mode streaming instability. Physics of Plasmas, 2015, 22, 012102.                                                                                                                                                              | 0.7 | 3         |
| 171 | Electrostatic ion perturbations in kinematically complex shear flows. New Journal of Physics, 2015, 17, 043019.                                                                                                                                                | 1.2 | 1         |
| 172 | EFFECTS OF ELECTRONS ON THE ELECTROMAGNETIC ION CYCLOTRON INSTABILITY: SOLAR WIND IMPLICATIONS. Astrophysical Journal, 2015, 814, 34.                                                                                                                          | 1.6 | 22        |
| 173 | Decameter U-burst Harmonic Pair from a High Loop. Solar Physics, 2015, 290, 181-192.                                                                                                                                                                           | 1.0 | 13        |
| 174 | Simulating AIA observations of a flux rope ejection. Astronomy and Astrophysics, 2014, 568, A120.                                                                                                                                                              | 2.1 | 24        |
| 175 | Ion acoustic mode in permeating plasmas. Journal of Physics: Conference Series, 2014, 511, 012010.                                                                                                                                                             | 0.3 | 3         |
| 176 | The interplay of Kappa and core populations in the solar wind: Electromagnetic electron cyclotron instability. Journal of Geophysical Research: Space Physics, 2014, 119, 9395-9406.                                                                           | 0.8 | 24        |
| 177 | Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere. Monthly<br>Notices of the Royal Astronomical Society, 2014, 438, 3568-3576.                                                                                          | 1.6 | 10        |
| 178 | Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows. Physics of Plasmas, 2014, 21, 082902.                                                                                                                      | 0.7 | 2         |
| 179 | OBSERVATIONAL CHARACTERISTICS OF CORONAL MASS EJECTIONS WITHOUT LOW-CORONAL SIGNATURES.<br>Astrophysical Journal, 2014, 795, 49.                                                                                                                               | 1.6 | 53        |
| 180 | OBSERVATIONAL EVIDENCE OF TORUS INSTABILITY AS TRIGGER MECHANISM FOR CORONAL MASS EJECTIONS:<br>THE 2011 AUGUST 4 FILAMENT ERUPTION. Astrophysical Journal, 2014, 785, 88.                                                                                     | 1.6 | 55        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Variations in EUV Irradiance: Comparison between LYRA, ESP, and SWAP Integrated Flux. Advances in Astronomy, 2014, 2014, 1-13.                                                                   | 0.5 | 1         |
| 182 | The Electron Firehose and Ordinary-Mode Instabilities in Space Plasmas. Solar Physics, 2014, 289, 369-378.                                                                                       | 1.0 | 31        |
| 183 | Solar Decameter Spikes. Solar Physics, 2014, 289, 1701-1714.                                                                                                                                     | 1.0 | 19        |
| 184 | Variation of Proton Flux Profiles with the Observer's Latitude in Simulated Gradual SEP Events. Solar<br>Physics, 2014, 289, 1745-1762.                                                          | 1.0 | 15        |
| 185 | GRADSPMHD: A parallel MHD code based on the SPH formalism. Computer Physics Communications, 2014, 185, 1053-1073.                                                                                | 3.0 | 6         |
| 186 | Instability of the parallel electromagnetic modes in Kappa distributed plasmas – II. Electromagnetic ion–cyclotron modes. Monthly Notices of the Royal Astronomical Society, 2014, 437, 641-648. | 1.6 | 30        |
| 187 | A GPU-enabled Finite Volume solver for global magnetospheric simulations on unstructured grids.<br>Computer Physics Communications, 2014, 185, 2538-2557.                                        | 3.0 | 28        |
| 188 | Solar Wind Electron Strahls Associated with a High-Latitude CME: Ulysses Observations. Solar Physics, 2014, 289, 4239-4266.                                                                      | 1.0 | 9         |
| 189 | Features of coronal heating by drift waves. Journal of Physics: Conference Series, 2014, 511, 012054.                                                                                            | 0.3 | 1         |
| 190 | Kinetic dust acoustic mode in inhomogeneous partially magnetized plasma. Journal of Physics:<br>Conference Series, 2014, 511, 012011.                                                            | 0.3 | 1         |
| 191 | SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager. Solar Physics, 2013, 286, 185-199.                                                                                            | 1.0 | 10        |
| 192 | Numerical Simulations of Dome-Shaped EUV Waves from Different Active-Region Configurations.<br>Solar Physics, 2013, 284, 515-539.                                                                | 1.0 | 6         |
| 193 | Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass<br>Ejections. Solar Physics, 2013, 284, 129-149.                                                  | 1.0 | 69        |
| 194 | Modeling Jupiter's magnetosphere: Influence of the internal sources. Journal of Geophysical Research:<br>Space Physics, 2013, 118, 2157-2172.                                                    | 0.8 | 45        |
| 195 | Space Weather Prediction and Exascale Computing. Computing in Science and Engineering, 2013, 15, 68-76.                                                                                          | 1.2 | 8         |
| 196 | Electromagnetic electron whistler-cyclotron instability in bi-Kappa distributed plasmas. Astronomy<br>and Astrophysics, 2013, 554, A64.                                                          | 2.1 | 29        |
| 197 | Magnetohydrodynamic simulations of the ejection of a magnetic flux rope. Astronomy and Astrophysics, 2013, 554, A77.                                                                             | 2.1 | 32        |
| 198 | SWIFF: Space weather integrated forecasting framework. Journal of Space Weather and Space Climate, 2013, 3, A05.                                                                                 | 1.1 | 21        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Forecasting the Earth's radiation belts and modelling solar energetic particle events: Recent results from SPACECAST. Journal of Space Weather and Space Climate, 2013, 3, A20.                              | 1.1 | 22        |
| 200 | Shearing motions and torus instability in the 2010 April 3 filament eruption. Proceedings of the International Astronomical Union, 2013, 8, 475-476.                                                         | 0.0 | 0         |
| 201 | Magnetohydrodynamic study on the effect of the gravity stratification on flux rope ejections.<br>Proceedings of the International Astronomical Union, 2013, 8, 197-200.                                      | 0.0 | 0         |
| 202 | Effect of gravitational stratification on the propagation of a CME. Astronomy and Astrophysics, 2013, 560, A38.                                                                                              | 2.1 | 17        |
| 203 | Self-heating in kinematically complex magnetohydrodynamic flows. Physics of Plasmas, 2012, 19, 012901.                                                                                                       | 0.7 | 3         |
| 204 | Reply to the Comment by P. K. Shukla and M. Akbari-Moghanjoughi. Europhysics Letters, 2012, 99, 65002.                                                                                                       | 0.7 | 3         |
| 205 | The role of photospheric shearing motions in a filament eruption related to the 2010 April 3 coronal mass ejection. Astronomy and Astrophysics, 2012, 537, A28.                                              | 2.1 | 6         |
| 206 | NUMERICAL MODELING OF THE INITIATION OF CORONAL MASS EJECTIONS IN ACTIVE REGION NOAA 9415.<br>Astrophysical Journal, 2012, 758, 117.                                                                         | 1.6 | 33        |
| 207 | DOME-SHAPED EUV WAVES FROM ROTATING ACTIVE REGIONS. Astrophysical Journal Letters, 2012, 747, L21.                                                                                                           | 3.0 | 16        |
| 208 | On quantum plasma: A plea for a common sense. Europhysics Letters, 2012, 99, 25001.                                                                                                                          | 0.7 | 14        |
| 209 | A Numerical Study of the Response of the Coronal Magnetic Field to Flux Emergence. Solar Physics, 2012, 280, 389-405.                                                                                        | 1.0 | 11        |
| 210 | Study of Multiple Coronal Mass Ejections at Solar Minimum Conditions. Solar Physics, 2012, 281, 223.                                                                                                         | 1.0 | 17        |
| 211 | THE ROLE OF STREAMERS IN THE DEFLECTION OF CORONAL MASS EJECTIONS: COMPARISON<br>BETWEEN <i>STEREO</i> THREE-DIMENSIONAL RECONSTRUCTIONS AND NUMERICAL SIMULATIONS.<br>Astrophysical Journal, 2012, 744, 66. | 1.6 | 93        |
| 212 | Observational evidence of Alfvén wings at the Earth. Journal of Geophysical Research, 2012, 117, .                                                                                                           | 3.3 | 33        |
| 213 | The birth of a solar eruption. Nature Physics, 2012, 8, 783-784.                                                                                                                                             | 6.5 | 0         |
| 214 | SELF-HEATING OF CORONA BY ELECTROSTATIC FIELDS DRIVEN BY SHEARED FLOWS. Astrophysical Journal, 2012, 748, 90.                                                                                                | 1.6 | 11        |
| 215 | Modeling Space Plasma Dynamics with Anisotropic Kappa Distributions. Thirty Years of Astronomical<br>Discovery With UKIRT, 2012, , 97-107.                                                                   | 0.3 | 27        |
| 216 | Acceleration of dust particles by vortex ring. Journal of Plasma Physics, 2011, 77, 155-162.                                                                                                                 | 0.7 | 3         |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Investigation of dynamics of self-similarly evolving magnetic clouds. Astronomy and Astrophysics, 2011, 526, A22.                                                                                | 2.1 | 6         |
| 218 | Magnetic clouds in the solar wind: a numerical assessment of analytical models. Astronomy and Astrophysics, 2011, 536, A100.                                                                     | 2.1 | 4         |
| 219 | The role of streamers in the deflection of coronal mass ejections. Proceedings of the International Astronomical Union, 2011, 7, 134-138.                                                        | 0.0 | 0         |
| 220 | Magnetic helicity balance during a filament eruption that occurred in active region NOAA 9682.<br>Astronomy and Astrophysics, 2011, 530, A36.                                                    | 2.1 | 12        |
| 221 | ON THE INTERNAL STRUCTURE OF THE MAGNETIC FIELD IN MAGNETIC CLOUDS AND INTERPLANETARY CORONAL MASS EJECTIONS: WRITHE VERSUS TWIST. Astrophysical Journal Letters, 2011, 738, L18.                | 3.0 | 39        |
| 222 | Proton firehose instability in bi-Kappa distributed plasmas. Astronomy and Astrophysics, 2011, 534, A116.                                                                                        | 2.1 | 45        |
| 223 | Instability of the parallel electromagnetic modes in Kappa distributed plasmas - I. Electron<br>whistler-cyclotron modes. Monthly Notices of the Royal Astronomical Society, 2011, 410, 663-670. | 1.6 | 43        |
| 224 | A polytropic model for the solar wind. Advances in Space Research, 2011, 48, 1958-1966.                                                                                                          | 1.2 | 31        |
| 225 | Electron streams formation and secondary two stream instability onset in the post-saturation regime of the classical Weibel instability. Physics of Plasmas, 2011, 18, .                         | 0.7 | 11        |
| 226 | Shear flow-driven electrostatic instabilities in low density and low temperature pair-ion plasmas with and without electrons. Physics of Plasmas, 2011, 18, 052108.                              | 0.7 | 4         |
| 227 | Validation of CME Detection Software (CACTus) by Means of Simulated Data, and Analysis of Projection Effects on CME Velocity Measurements. Solar Physics, 2011, 270, 253-272.                    | 1.0 | 7         |
| 228 | Why should the latitude of the observer be considered when modeling gradual proton events? An insight using the concept of cobpoint. Advances in Space Research, 2011, 47, 2140-2151.            | 1.2 | 15        |
| 229 | Models for coronal mass ejections. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1148-1155.                                                                                    | 0.6 | 21        |
| 230 | Existence of Dust Atoms & amp; Modified OML Theory. AIP Conference Proceedings, 2011, , .                                                                                                        | 0.3 | 3         |
| 231 | Weak and Strong MHD Turbulence. , 2011, , .                                                                                                                                                      |     | 0         |
| 232 | Models of Imbalanced MHD Turbulence. , 2011, , .                                                                                                                                                 |     | 0         |
| 233 | KINETIC INSTABILITY OF DRIFT-ALFVÉN WAVES IN SOLAR CORONA AND STOCHASTIC HEATING. Astrophysical Journal, 2010, 719, 1335-1342.                                                                   | 1.6 | 17        |
| 234 | CONSISTENT SELF-SIMILAR MAGNETOHYDRODYNAMICS EVOLUTION OF CORONAL TRANSIENTS.<br>Astrophysical Journal, 2010, 712, 565-573.                                                                      | 1.6 | 4         |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | SIDE MAGNETIC RECONNECTIONS INDUCED BY CORONAL MASS EJECTIONS: OBSERVATIONS AND SIMULATIONS. Astrophysical Journal, 2010, 718, 251-265.                                              | 1.6 | 12        |
| 236 | Modeling of Local Magnetic Field Enhancements withinÂSolar Flux Ropes. Solar Physics, 2010, 261, 271-280.                                                                            | 1.0 | 5         |
| 237 | Drift waves in the corona: heating and acceleration of ions at frequencies far below the gyrofrequency. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1835-1839.     | 1.6 | 23        |
| 238 | Counterstreaming magnetized plasmas with kappa distributions – II. Perpendicular wave propagation.<br>Monthly Notices of the Royal Astronomical Society, 2010, 401, 362-370.         | 1.6 | 22        |
| 239 | Self-heating and its possible relationship to chromospheric heating in slowly rotating stars. Monthly Notices of the Royal Astronomical Society, 2010, , .                           | 1.6 | 2         |
| 240 | Interplay of Kinetic Plasma Instabilities. , 2010, , .                                                                                                                               |     | 0         |
| 241 | Resonant Weibel instability in counterstreaming plasmas with temperature anisotropies. Journal of<br>Plasma Physics, 2010, 76, 49-56.                                                | 0.7 | 8         |
| 242 | Features of ion acoustic waves in collisional plasmas. Physics of Plasmas, 2010, 17, .                                                                                               | 0.7 | 15        |
| 243 | Nonlinear three-wave interaction in pair plasmas. Physical Review E, 2010, 81, 067401.                                                                                               | 0.8 | 1         |
| 244 | The Problem of Coronal Heating. , 2010, , .                                                                                                                                          |     | 0         |
| 245 | Nonresonant electromagnetic instabilities in space plasmas: interplay of Weibel and firehose instabilities. AIP Conference Proceedings, 2010, , .                                    | 0.3 | 3         |
| 246 | Kinetic instability of the dust acoustic mode in inhomogeneous, partially magnetized plasma with both positively and negatively charged grains. Physical Review E, 2010, 82, 026411. | 0.8 | 6         |
| 247 | Is the Weibel instability enhanced by the suprathermal populations or not?. Physics of Plasmas, 2010, 17, .                                                                          | 0.7 | 23        |
| 248 | Numerical simulations of homologous coronal mass ejections in the solar wind. Astronomy and Astrophysics, 2009, 501, 1123-1130.                                                      | 2.1 | 15        |
| 249 | The role of lateral magnetic reconnection in solar eruptive events. Annales Geophysicae, 2009, 27,<br>3941-3948.                                                                     | 0.6 | 1         |
| 250 | Modelling the initiation of coronal mass ejections: magnetic flux emergence versus shearing motions.<br>Astronomy and Astrophysics, 2009, 507, 441-452.                              | 2.1 | 34        |
| 251 | Diamagnetic current does not produce an instability in the solar corona. Astronomy and Astrophysics, 2009, 503, 591-593.                                                             | 2.1 | 4         |
| 252 | Kinetic instability of ion acoustic mode in permeating plasmas. Physics of Plasmas, 2009, 16, .                                                                                      | 0.7 | 17        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | On the role of perpendicular electron collisions in drift and acoustic wave instabilities. Physics of Plasmas, 2009, 16, 022101.                                                                   | 0.7 | 8         |
| 254 | Solar nanoflares and other smaller energy release events as growing drift waves. Physics of Plasmas, 2009, 16, .                                                                                   | 0.7 | 8         |
| 255 | Acceleration of soliton by nonlinear Landau damping of dust-helical waves. Physics of Plasmas, 2009,<br>16, 053702.                                                                                | 0.7 | 8         |
| 256 | Weak and strong regimes of incompressible magnetohydrodynamic turbulence. Physics of Plasmas, 2009, 16, 072304.                                                                                    | 0.7 | 3         |
| 257 | Comment on "Alfvén Instability in a Compressible Flow― Physical Review Letters, 2009, 103, 019501;<br>author reply 019502.                                                                         | 2.9 | 1         |
| 258 | COSMOLOGICAL EFFECTS OF WEIBEL-TYPE INSTABILITIES. Astrophysical Journal, 2009, 693, 1133-1141.                                                                                                    | 1.6 | 78        |
| 259 | Magnetic Flux Emergence and Shearing Motions as Trigger Mechanisms for Coronal Mass Ejections. ,<br>2009, , .                                                                                      |     | 0         |
| 260 | A New Approach to the Coronal Heating Problem. , 2009, , .                                                                                                                                         |     | 0         |
| 261 | A Quaternionic Approach to Treat the Ideally Stationary Magnetohydrodynamic Equations. , 2009, , .                                                                                                 |     | 4         |
| 262 | GRADSPH: A parallel smoothed particle hydrodynamics code for self-gravitating astrophysical fluid dynamics. Computer Physics Communications, 2009, 180, 1164-1182.                                 | 3.0 | 19        |
| 263 | Limits for the Firehose Instability in Space Plasmas. Solar Physics, 2009, 258, 119-128.                                                                                                           | 1.0 | 28        |
| 264 | Models of Solar Wind Structures andÂTheir Interaction withÂtheÂEarth's Space Environment. Space<br>Science Reviews, 2009, 147, 233-270.                                                            | 3.7 | 25        |
| 265 | Electric fields in solar magnetic structures due to gradient-driven instabilities: heating and acceleration of particles. Monthly Notices of the Royal Astronomical Society, 2009, 400, 2147-2152. | 1.6 | 16        |
| 266 | The universally growing mode in the solar atmosphere: coronal heating by drift waves. Monthly Notices of the Royal Astronomical Society, 2009, 398, 918-930.                                       | 1.6 | 32        |
| 267 | Firehose instability in space plasmas with bi-kappa distributions. Astronomy and Astrophysics, 2009, 494, 311-315.                                                                                 | 2.1 | 51        |
| 268 | On the existence of Weibel instability in a magnetized plasma. I. Parallel wave propagation. Physics of<br>Plasmas, 2009, 16, 012106.                                                              | 0.7 | 27        |
| 269 | Numerical simulations of the solar corona and Coronal Mass Ejections. Earth, Planets and Space, 2009, 61, 599-602.                                                                                 | 0.9 | 2         |
| 270 | Three frontside full halo coronal mass ejections with a nontypical geomagnetic response. Space<br>Weather, 2009, 7, .                                                                              | 1.3 | 22        |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Linking two consecutive nonmerging magnetic clouds with their solar sources. Journal of<br>Geophysical Research, 2009, 114, .                                          | 3.3 | 68        |
| 272 | A new paradigm for solar coronal heating. Europhysics Letters, 2009, 86, 39001.                                                                                        | 0.7 | 21        |
| 273 | THE INTERNAL STRUCTURE OF CORONAL MASS EJECTIONS: ARE ALL REGULAR MAGNETIC CLOUDS FLUX ROPES?. Astrophysical Journal, 2009, 695, L171-L175.                            | 1.6 | 52        |
| 274 | Effects of friction on modes in collisional multicomponent plasmas. Journal of Physics: Conference Series, 2009, 162, 012017.                                          | 0.3 | 0         |
| 275 | FARLEY-BUNEMAN INSTABILITY IN THE SOLAR CHROMOSPHERE. Astrophysical Journal, 2009, 706, L12-L16.                                                                       | 1.6 | 25        |
| 276 | Acoustic oscillations in the field-free, gravitationally stratified cavities under solar bipolar magnetic canopies. Astronomy and Astrophysics, 2009, 505, 763-770.    | 2.1 | 20        |
| 277 | Magnetic helicity and active filament configuration. Astronomy and Astrophysics, 2009, 506, 895-900.                                                                   | 2.1 | 7         |
| 278 | Characteristics of magnetised plasma flow around stationary andÂexpanding magnetic clouds.<br>Astronomy and Astrophysics, 2009, 507, 611-616.                          | 2.1 | 3         |
| 279 | Modeling of the magnetic field in the magnetosheath region. Journal of Geophysical Research, 2008, 113, .                                                              | 3.3 | 14        |
| 280 | Counterstreaming magnetized plasmas with kappa distributions - I. Parallel wave propagation. Monthly<br>Notices of the Royal Astronomical Society, 2008, 390, 168-174. | 1.6 | 71        |
| 281 | Electrostatic waves in inhomogeneous pair-ion plasma. AIP Conference Proceedings, 2008, , .                                                                            | 0.3 | Ο         |
| 282 | Global Modes in Spatially Limited Plasmas. , 2008, , .                                                                                                                 |     | 0         |
| 283 | Collisional energy transfer in two-component plasmas. Physics of Plasmas, 2008, 15, 092107.                                                                            | 0.7 | 12        |
| 284 | Ion thermal effects in oscillating multi-ion plasma sheath theory. Physics of Plasmas, 2008, 15, .                                                                     | 0.7 | 5         |
| 285 | Electrostatic modes in multi-ion and pair-ion collisional plasmas. Physics of Plasmas, 2008, 15, 072104.                                                               | 0.7 | 71        |
| 286 | Global convective cell formation in pair-ion plasmas. Physics of Plasmas, 2008, 15, 044501.                                                                            | 0.7 | 11        |
| 287 | Note on the role of friction-induced momentum conservation in the collisional drift wave instability.<br>Physics of Plasmas, 2008, 15, 034504.                         | 0.7 | 8         |
| 288 | Magnetic flux emergence and shearing motions as CME trigger mechanisms. AIP Conference<br>Proceedings, 2008, , .                                                       | 0.3 | 0         |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Initiation of Coronal Mass Ejections by Magnetic Flux Emergence in the Framework of the Breakout<br>Model. Astrophysical Journal, 2008, 689, L157-L160.      | 1.6 | 25        |
| 290 | Growing drift-cyclotron modes in the hot solar atmosphere. Astronomy and Astrophysics, 2008, 482, 653-656.                                                   | 2.1 | 13        |
| 291 | Magnetic clouds seen at different locations in the heliosphere. Annales Geophysicae, 2008, 26, 213-229.                                                      | 0.6 | 32        |
| 292 | On the combination of ACE data with numerical simulations to determine the initial characteristics of a CME. Astronomy and Astrophysics, 2008, 492, L29-L32. | 2.1 | 26        |
| 293 | Energy flux of Alfvén waves in weakly ionized plasma. Astronomy and Astrophysics, 2008, 478, 553-558.                                                        | 2.1 | 64        |
| 294 | Magnetic field disturbances in the sheath region of a super-sonic interplanetary magnetic cloud.<br>Annales Geophysicae, 2008, 26, 3153-3158.                | 0.6 | 2         |
| 295 | Acoustic oscillations in a field-free cavity under solar small-scale bipolar magnetic canopy. Annales<br>Geophysicae, 2008, 26, 2983-2989.                   | 0.6 | 26        |
| 296 | Numerical simulations of the initiation and the IP evolution of coronal mass ejections. AIP Conference Proceedings, 2007, , .                                | 0.3 | 0         |
| 297 | Gas acoustic and ion acoustic waves in partially ionized plasmas with magnetized electrons. Physics of Plasmas, 2007, 14, 032106.                            | 0.7 | 7         |
| 298 | Amplification of compressional magnetohydrodynamic waves in systems with forced entropy oscillations. Physical Review E, 2007, 76, 046404.                   | 0.8 | 10        |
| 299 | On the shear flow instability and its applications to multicomponent plasmas. Physics of Plasmas, 2007, 14, .                                                | 0.7 | 33        |
| 300 | Comment on "Heating of the Solar Corona by Dissipative Alfvén Solitons― Physical Review Letters,<br>2007, 98, 049501; discussion 049502.                     | 2.9 | 9         |
| 301 | Modifications to the resistive MHD spectrum due to changes in the equilibrium. Plasma Physics and Controlled Fusion, 2007, 49, 261-271.                      | 0.9 | 12        |
| 302 | Quantifying Shearâ€induced Wave Transformations in the Solar Wind. Astrophysical Journal, 2007, 664, 549-555.                                                | 1.6 | 9         |
| 303 | Overreflection and Generation of Gravitoâ€Alfven Waves in Solarâ€Type Stars. Astrophysical Journal, 2007, 664, 1221-1227.                                    | 1.6 | 2         |
| 304 | Simulation of a Breakout Coronal Mass Ejection in the Solar Wind. Astrophysical Journal, 2007, 671,<br>L77-L80.                                              | 1.6 | 48        |
| 305 | Modeling of the three-dimensional motion of toroidal magnetic clouds in the inner heliosphere.<br>Astronomy and Astrophysics, 2007, 466, 357-365.            | 2.1 | 3         |
| 306 | On the properties of electrostatic drift and sound modes in radially and axially inhomogeneous bounded plasmas. Physics of Plasmas, 2007, 14, 112106.        | 0.7 | 8         |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Electromagnetic ion acoustic perturbations in spatially varying plasma. Physics of Plasmas, 2007, 14, 034504.                                                             | 0.7 | 7         |
| 308 | Plasma flows around magnetic obstacles in the solar wind. Astronomy and Astrophysics, 2007, 475, 1093-1100.                                                               | 2.1 | 4         |
| 309 | Observational evidence favors a resistive wave heating mechanism for coronal loops over a viscous phenomenon. Astronomy and Astrophysics, 2007, 471, 311-314.             | 2.1 | 25        |
| 310 | Unstable drift mode driven by shear plasma flow in solar spicules. Astronomy and Astrophysics, 2007, 471, 289-293.                                                        | 2.1 | 18        |
| 311 | Comparison between 2.5D and 3D simulations of coronal mass ejections. Astronomy and Astrophysics, 2007, 470, 359-365.                                                     | 2.1 | 21        |
| 312 | Stabilizing effects of positron dynamics on the local and global drift modes. Physics Letters, Section<br>A: General, Atomic and Solid State Physics, 2007, 366, 466-470. | 0.9 | 0         |
| 313 | Analysis of the effect of neutral flow on the waves in the solar photosphere. Astronomy and Astrophysics, 2007, 461, 277-284.                                             | 2.1 | 4         |
| 314 | MHD seismology of coronal loops using the period and damping of quasi-mode kink oscillations.<br>Astronomy and Astrophysics, 2007, 463, 333-338.                          | 2.1 | 132       |
| 315 | Simulating CME Initiation and Evolution: State-of-the-art. Astrophysics and Space Science Library, 2007, , 39-48.                                                         | 1.0 | Ο         |
| 316 | Transparent Log-Based Data Storage in MPI-IO Applications. Lecture Notes in Computer Science, 2007, , 233-241.                                                            | 1.0 | 2         |
| 317 | A Study of Real World I/O Performance in Parallel Scientific Computing. , 2007, , 871-881.                                                                                |     | 2         |
| 318 | The effects of inelastic collisions on waves in partially ionized plasma. Plasma Sources Science and Technology, 2006, 15, S1-S7.                                         | 1.3 | 3         |
| 319 | Fluid modeling of the electron flow driven ion acoustic mode in a collisional plasma with magnetized electrons. Physics of Plasmas, 2006, 13, 122103.                     | 0.7 | 11        |
| 320 | Properties of the acoustic mode in partially ionized and dusty plasmas. Physics of Plasmas, 2006, 13, 052103.                                                             | 0.7 | 14        |
| 321 | Inverse and normal coronal mass ejections: evolution up to 1 AU. Astronomy and Astrophysics, 2006, 447, 727-733.                                                          | 2.1 | 48        |
| 322 | EVector: An Efficient Vector Implementation – Using Virtual Memory for Improving Memory. Scientific<br>Programming, 2006, 14, 45-59.                                      | 0.5 | 0         |
| 323 | Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance<br>Environment. Scientific Programming, 2006, 14, 111-139.                      | 0.5 | 21        |
| 324 | Simulations of the Onset and the Evolution of Coronal Mass Ejections. Fusion Science and Technology, 2006, 49, 477-488.                                                   | 0.6 | 0         |

| #   | Article                                                                                                                                                           | IF       | CITATIONS   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 325 | Growing drift-Alfvén modes in collisional solar plasma. Astronomy and Astrophysics, 2006, 458, 635-640.                                                           | 2.1      | 17          |
| 326 | Nonmodal Cascade in the Compressible Solar Atmosphere: Self-Heating, an Alternative Way to Enhance<br>Wave Heating. Astrophysical Journal, 2006, 642, L73-L76.    | 1.6      | 22          |
| 327 | Comment on â€~Effect of ionization on ion acoustic solitary waves in a collisional dusty plasma' (J.) Tj ETQq1                                                    | 1 0.7843 | 14 rgBT /Ov |
| 328 | Instability of electrostatic modes in partially ionized plasma. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 2006, 348, 346-354.       | 0.9      | 16          |
| 329 | On some properties of linear and nonlinear waves in pair-ion plasmas. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 2006, 350, 375-379. | 0.9      | 54          |
| 330 | Unstable kinetic Alfvén wave in partially ionized plasma. Planetary and Space Science, 2006, 54, 641-644.                                                         | 0.9      | 5           |
| 331 | Collisional instability of the drift wave in multi-component plasmas. Planetary and Space Science, 2006, 54, 695-700.                                             | 0.9      | 10          |
| 332 | Unstable ion sound in plasmas with drifting electrons. European Physical Journal D, 2006, 40, 257-262.                                                            | 0.6      | 6           |
| 333 | Initiation of cmes by magnetic flux emergence. Journal of Astrophysics and Astronomy, 2006, 27, 159-166.                                                          | 0.4      | 7           |
| 334 | Drift-Alfvén eigenmodes in inhomogeneous plasma. Physics of Plasmas, 2006, 13, 032107.                                                                            | 0.7      | 5           |
| 335 | The effect of the solar wind on CME triggering by magnetic foot point shearing. Astronomy and Astrophysics, 2006, 450, 793-803.                                   | 2.1      | 36          |
| 336 | The initiation of coronal mass ejections by magnetic flux emergence. Astronomy and Astrophysics, 2006, 459, 927-934.                                              | 2.1      | 15          |
| 337 | On the Usability of High-Level Parallel IO in Unstructured Grid Simulations. Lecture Notes in Computer Science, 2006, , 400-401.                                  | 1.0      | 1           |
| 338 | Detailed comparison of downflows seen both in EITÂ30.4 nm and Big Bear Hα movies. Astronomy and<br>Astrophysics, 2005, 443, 319-328.                              | 2.1      | 53          |
| 339 | Dynamics of Coronal Loop Oscillations Recent Improvements and Computational Aspects. Space Science Reviews, 2005, 121, 79-89.                                     | 3.7      | 1           |
| 340 | Modelling of Solar Wind, CME Initiation and CME Propagation. Space Science Reviews, 2005, 121, 91-104.                                                            | 3.7      | 16          |
| 341 | Foreword: Computing in Space and Astrophysical Plasmas. Space Science Reviews, 2005, 121, 1-2.                                                                    | 3.7      | 0           |
| 342 | "Swing Absorption―of fast magnetosonic waves in inhomogeneous media. Astronomy and<br>Astrophysics, 2005, 429, 767-777.                                           | 2.1      | 9           |

0

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | On the effect of the inhomogeneous subsurface flows on the high degree solarp-modes. Astronomy and Astrophysics, 2005, 438, 1083-1097.                            | 2.1 | 6         |
| 344 | Solar coronal loop oscillations: theory of resonantly damped oscillations and comparison with observations. AIP Conference Proceedings, 2005, , .                 | 0.3 | 9         |
| 345 | Effects of ionization on the collisional streaming instability. Physics of Plasmas, 2005, 12, 112103.                                                             | 0.7 | 4         |
| 346 | On waves and instabilities in pair-ion plasma. Plasma Sources Science and Technology, 2005, 14, 485-491.                                                          | 1.3 | 72        |
| 347 | Low-frequency waves in bounded streaming plasma. Physics of Plasmas, 2005, 12, 064501.                                                                            | 0.7 | 10        |
| 348 | The COOLFluiD Framework: Design Solutions for High Performance Object Oriented Scientific Computing Software. Lecture Notes in Computer Science, 2005, , 279-286. | 1.0 | 36        |
| 349 | "Swing Absorption―of fast magnetosonic waves in inhomogeneous media. Astronomy and<br>Astrophysics, 2005, 433, 15-15.                                             | 2.1 | 1         |
| 350 | On the effect of the background wind on the evolution of interplanetary shock waves. Astronomy and Astrophysics, 2005, 430, 1099-1107.                            | 2.1 | 32        |
| 351 | On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks. Astronomy and Astrophysics, 2005, 432, 331-339.         | 2.1 | 57        |
| 352 | The MHD model. , 2004, , 131-185.                                                                                                                                 |     | 0         |
| 353 | Spectral theory. , 2004, , 230-299.                                                                                                                               |     | 0         |
| 354 | â€~Derivation' of the macroscopic equations. , 2004, , 83-128.                                                                                                    |     | 0         |
| 355 | Waves and instabilities of inhomogeneous plasmas. , 2004, , 300-383.                                                                                              |     | 1         |
| 356 | Magnetic structures and dynamics. , 2004, , 384-430.                                                                                                              |     | 0         |
| 357 | Cylindrical plasmas. , 2004, , 431-495.                                                                                                                           |     | 0         |
| 358 | Initial value problem and wave damping. , 2004, , 496-532.                                                                                                        |     | 0         |
| 359 | Resonant absorption and wave heating. , 2004, , 533-576.                                                                                                          |     | 0         |
|     |                                                                                                                                                                   |     |           |

Belements of plasma physics. , 2004, , 34-82.

| #   | Article                                                                                                                                                                                             | IF                | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 361 | Waves and characteristics. , 2004, , 186-229.                                                                                                                                                       |                   | 0         |
| 362 | The effects of image charge on waves in dusty plasma. AIP Conference Proceedings, 2004, , .                                                                                                         | 0.3               | 0         |
| 363 | Waves in bounded dusty plasma. AIP Conference Proceedings, 2004, , .                                                                                                                                | 0.3               | 0         |
| 364 | Ion temperature gradient instability in a dusty plasma. Physical Review E, 2004, 69, 056404.                                                                                                        | 0.8               | 17        |
| 365 | Electrostatic perturbations in partially ionized plasma with the effects of ionization and recombination. Physics of Plasmas, 2004, 11, 4188-4195.                                                  | 0.7               | 8         |
| 366 | Transient shear instability of differentially rotating and self-gravitating dusty plasma. Physics of Plasmas, 2004, 11, 1655-1662.                                                                  | 0.7               | 7         |
| 367 | Response to "Comment on â€`lon–acoustic waves in dusty plasma with charge fluctuations' ―[Phy:<br>Plasmas 11, 849 (2004)]. Physics of Plasmas, 2004, 11, 852-852.                                   | <sup>S.</sup> 0.7 | Ο         |
| 368 | Waves propagating along a density gradient in a dusty plasma. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 2004, 320, 423-427.                                           | 0.9               | 2         |
| 369 | The image charge effects on plasma waves in the presence of neutral dust grains. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2004, 323, 439-444.                        | 0.9               | 2         |
| 370 | Streaming ion instability in nonuniform magnetized plasmas and nonlinear structures. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2004, 328, 65-72.                      | 0.9               | 1         |
| 371 | Comment on: "Theory of vortex flows in partially ionized magnetoplasmas―[Phys. Lett. A 326 (2004)<br>267]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 329, 162-164. | 0.9               | 0         |
| 372 | Analysis of low-frequency waves in inhomogeneous and bounded plasmas. Physics of Plasmas, 2004, 11, 891-897.                                                                                        | 0.7               | 25        |
| 373 | Electrostatic waves in bounded dusty magnetoplasma. Physics of Plasmas, 2004, 11, 2178-2181.                                                                                                        | 0.7               | 13        |
| 374 | Damping of Coronal Loop Oscillations: Calculation of Resonantly Damped Kink Oscillations of Oneâ€dimensional Nonuniform Loops. Astrophysical Journal, 2004, 606, 1223-1232.                         | 1.6               | 169       |
| 375 | Intensity variations in EIT shutterless mode: Waves or flows?. Astronomy and Astrophysics, 2004, 415, 1141-1151.                                                                                    | 2.1               | 59        |
| 376 | The effect of curvature on quasi-modes in coronal loops. Astronomy and Astrophysics, 2004, 424, 1065-1074.                                                                                          | 2.1               | 102       |
| 377 | Computer simulations of solar plasmas. Space Science Reviews, 2003, 107, 63-80.                                                                                                                     | 3.7               | 8         |
| 378 | Jeans instability of an inhomogeneous streaming dusty plasma. Pramana - Journal of Physics, 2003, 61,<br>109-120.                                                                                   | 0.9               | 12        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Interchange mode in the presence of dust. Physical Review E, 2003, 67, 026410.                                                                                                                | 0.8 | 6         |
| 380 | Conservative Multidimensional Upwind Residual Distribution Schemes for Arbitrary Finite Elements. , 2003, , 88-93.                                                                            |     | 4         |
| 381 | Variation of coronal line widths on and off the disk. Astronomy and Astrophysics, 2003, 400, 1065-1070.                                                                                       | 2.1 | 33        |
| 382 | Computer Simulations of Solar Plasmas. , 2003, , 63-80.                                                                                                                                       |     | 0         |
| 383 | Three-Wave Interaction in a Self-Gravitating Fluid. Physical Review Letters, 2002, 89, 131102.                                                                                                | 2.9 | 7         |
| 384 | Analytical Description of a Neutral-Induced Tripole Vortex in a Plasma. Physical Review Letters, 2002, 89, 265002.                                                                            | 2.9 | 34        |
| 385 | Ion–acoustic waves in dusty plasma with charge fluctuations. Physics of Plasmas, 2002, 9, 1464-1467.                                                                                          | 0.7 | 19        |
| 386 | The Pulsational Mode in the Presence of Dust Charge Fluctuations. Physica Scripta, 2002, 65, 513-517.                                                                                         | 1.2 | 30        |
| 387 | Equilibrium Properties of a Gravitating Dusty Plasma. Physica Scripta, 2002, 66, 269-272.                                                                                                     | 1.2 | 9         |
| 388 | Comment on "Effect of flow profile on low frequency drift-type waves in a dusty plasma―[Phys.<br>Plasmas8, 3150 (2001)]. Physics of Plasmas, 2002, 9, 1481-1482.                              | 0.7 | 0         |
| 389 | Helicity loading and dissipation: The helicity budget of ar 7978 from the cradle to the grave. COSPAR<br>Colloquia Series, 2002, , 143-146.                                                   | 0.2 | 0         |
| 390 | A dipolar vortex in a magnetized pair plasma containing nonuniform flows. Physics of Plasmas, 2002,<br>9, 806-810.                                                                            | 0.7 | 1         |
| 391 | Does spiral galaxy ICÂ342 exhibit shear induced wave transformations!?. Astronomy and Astrophysics, 2002, 385, 32-38.                                                                         | 2.1 | 4         |
| 392 | Electron acoustic wave in a dusty plasma. Planetary and Space Science, 2002, 50, 807-810.                                                                                                     | 0.9 | 4         |
| 393 | On the theory of MAG waves and a comparison with sunspot observations from CDS/SoHO.<br>Astronomy and Astrophysics, 2002, 395, 263-277.                                                       | 2.1 | 11        |
| 394 | Effects of dust charge fluctuations on current-driven dust-ion-acoustic waves. Physical Review E, 2001, 64, 066404.                                                                           | 0.8 | 28        |
| 395 | Development of Genuinely Multidimensional Upwind Residual Distribution Schemes for the System of<br>Eight Wave Ideal Magnetohydro-Dynamic Equations on Unstructured Grids. , 2001, , 189-196. |     | 0         |
|     |                                                                                                                                                                                               |     |           |

Intermediate Shocks in 3D MHD Bow Shock Flows. , 2001, , 247-252.

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Parallel residual distribution solver for the ideal 3D magnetohydrodynamic equations - Applications to flows in space physics. , 2001, , .                                |     | 0         |
| 398 | Disintegration and reformation of intermediate-shock segments in three-dimensional MHD bow shock flows. Journal of Geophysical Research, 2001, 106, 30023-30037.          | 3.3 | 15        |
| 399 | Skin Size Vortices in Streaming Plasmas. Physica Scripta, 2001, T98, 155.                                                                                                 | 1.2 | 0         |
| 400 | Stationary Two-Dimensional Magnetohydrodynamic Flows with Shocks: Characteristic Analysis and Grid Convergence Study. Journal of Computational Physics, 2001, 166, 28-62. | 1.9 | 25        |
| 401 | A Survey of Field-Aligned Mach Number and Plasma Beta in the Solar Wind. Space Science Reviews, 2001, 97, 201-204.                                                        | 3.7 | 3         |
| 402 | Shear Induced Phenomena in Dusty Plasma Flows. Astrophysics and Space Science, 2001, 277, 135-138.                                                                        | 0.5 | 1         |
| 403 | Monotone Residual Distribution Schemes for the Ideal Magnetohydrodynamic Equations on Unstructured Grids. AIAA Journal, 2001, 39, 1532-1541.                              | 1.5 | 6         |
| 404 | ACOUSTICS OF KINEMATICALLY COMPLEX SHEAR FLOWS. Journal of Computational Acoustics, 2001, 09, 869-888.                                                                    | 1.0 | 5         |
| 405 | Linear and nonlinear electrostatic modes in a nonuniform magnetized electron plasma. Physics of Plasmas, 2001, 8, 3165-3176.                                              | 0.7 | 3         |
| 406 | Velocity shear driven electron skin size vortices. Physics of Plasmas, 2001, 8, 3913-3920.                                                                                | 0.7 | 3         |
| 407 | Overcompressive Shocks and Compound Shocks in 2D and 3D Magnetohydrodynamic Flows. , 2001, , 791-800.                                                                     |     | 3         |
| 408 | Slow magnetoacoustic waves in coronal loops: EIT and TRACE. Astronomy and Astrophysics, 2001, 370, 591-601.                                                               | 2.1 | 137       |
| 409 | Spatial aspect of wave transformations in astrophysical flows. Astronomy and Astrophysics, 2001, 374, 337-347.                                                            | 2.1 | 17        |
| 410 | Monotone residual distribution schemes for the ideal magnetohydrodynamic equations on unstructured grids. AIAA Journal, 2001, 39, 1532-1541.                              | 1.5 | 5         |
| 411 | Nonmodal phenomena in differentially rotating dusty plasmas. AIP Conference Proceedings, 2000, , .                                                                        | 0.3 | 0         |
| 412 | Slow magnetoacoustic waves in coronal loops: EIT vs TRACE. AIP Conference Proceedings, 2000, , .                                                                          | 0.3 | 1         |
| 413 | Disintegration and reformation of intermediate shock segments in 3D MHD bow shock flows. AIP Conference Proceedings, 2000, , .                                            | 0.3 | 2         |
| 414 | Intermediate Shocks in Three-Dimensional Magnetohydrodynamic Bow-Shock Flows with Multiple<br>Interacting Shock Fronts. Physical Review Letters, 2000, 84, 5524-5527.     | 2.9 | 29        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | Acoustic phenomena in electrostatic dusty plasma shear flows. Physics of Plasmas, 2000, 7, 3204-3213.                                                                           | 0.7 | 8         |
| 416 | Are galactic magnetohydrodynamic waves coupled?. Monthly Notices of the Royal Astronomical Society, 1999, 307, L31-L36.                                                         | 1.6 | 13        |
| 417 | Velocity Shear Induced Phenomena in Solar Atmosphere. Space Science Reviews, 1999, 87, 295-298.                                                                                 | 3.7 | 2         |
| 418 | Monotone residual distribution schemes for the ideal 2D magnetohydrodynamic equations on unstructured grids. , 1999, , .                                                        |     | 5         |
| 419 | Characteristic analysis of a complex two-dimensional magnetohydrodynamic bow shock flow with steady compound shocks. Physics of Plasmas, 1999, 6, 954-969.                      | 0.7 | 20        |
| 420 | Stationary slow shocks in the magnetosheath for solar wind conditions with β < 2/γ: Three-dimensional MHD simulations. Journal of Geophysical Research, 1999, 104, 22401-22406. | 3.3 | 14        |
| 421 | Magnetohydrodynamics Stability Analysis of the KT-2 Tokamak Plasma. Fusion Science and Technology, 1999, 35, 18-31.                                                             | 0.6 | 0         |
| 422 | CASTOR: Normal-Mode Analysis of Resistive MHD Plasmas. Journal of Computational Physics, 1998, 142, 271-303.                                                                    | 1.9 | 120       |
| 423 | Complex magnetohydrodynamic bow shock topology in field-aligned low-β flow around a perfectly conducting cylinder. Physics of Plasmas, 1998, 5, 4015-4027.                      | 0.7 | 46        |
| 424 | Dynamics of hot filaments in a tokamak plasma. Journal of Plasma Physics, 1998, 59, 277-302.                                                                                    | 0.7 | 4         |
| 425 | Data parallel simulations of the magnetohydrodynamics of plasma loops. Lecture Notes in Computer<br>Science, 1998, , 233-241.                                                   | 1.0 | 1         |
| 426 | Shearâ€Flow–induced Wave Couplings in the Solar Wind. Astrophysical Journal, 1998, 505, 369-375.                                                                                | 1.6 | 41        |
| 427 | A data parallel pseudo-spectral semi-implicit magnetohydrodynamics code. Lecture Notes in Computer<br>Science, 1997, , 190-199.                                                 | 1.0 | 3         |
| 428 | Calculating magnetohydrodynamic flow spectra. Computer Physics Communications, 1997, 106, 39-52.                                                                                | 3.0 | 17        |
| 429 | NONLINEAR MHD SIMULATIONS OF WAVE DISSIPATION IN FLUX TUBES. Solar Physics, 1997, 172, 45-52.                                                                                   | 1.0 | 24        |
| 430 | Two-dimensional equilibrium in coronal magnetostatic flux tubes: an accurate equilibrium solver.<br>Computer Physics Communications, 1997, 106, 21-38.                          | 3.0 | 6         |
| 431 | Visualization of resonant absorption in solar coronal loops by simulation of soft x-ray images.<br>Computers in Physics, 1996, 10, 573.                                         | 0.6 | 7         |
| 432 | Parallel magnetohydrodynamics on the Cray T3D. Future Generation Computer Systems, 1996, 12, 307-323.                                                                           | 4.9 | 3         |

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | Magnetohydrodynamic Continua and Stratification Induced Alfvén Eigenmodes in Coronal Magnetic<br>Loops. Physical Review Letters, 1996, 76, 567-570.               | 2.9 | 18        |
| 434 | Calculations of Soft X-ray Images from MHD Simulations of Heating of Coronal Loops. , 1996, , 423-424.                                                            |     | 0         |
| 435 | 2D and 3D Nonlinear MHD Simulations of Coronal Loop Heating by Alfvén Waves. , 1996, , 425-426.                                                                   |     | 0         |
| 436 | Application of the Implicitly Updated Arnoldi Method with a Complex Shift-and-Invert Strategy in MHD.<br>Journal of Computational Physics, 1995, 118, 320-328.    | 1.9 | 19        |
| 437 | Stability of global Alfven waves (TAE, EAE) in JET tritium discharges. Plasma Physics and Controlled Fusion, 1994, 36, 911-923.                                   | 0.9 | 25        |
| 438 | 3D nonlinear wave heating of coronal loops. Space Science Reviews, 1994, 68, 103-108.                                                                             | 3.7 | 3         |
| 439 | On the quality of resonant absorption as a coronal loop heating mechanism. Solar Physics, 1994, 151, 271-304.                                                     | 1.0 | 23        |
| 440 | Magnetohydrodynamic spectroscopy: Large scale computation of the spectrum of waves in plasmas.<br>Future Generation Computer Systems, 1994, 10, 339-343.          | 4.9 | 5         |
| 441 | Linear Visco-Resistive Computations of Magnetohydrodynamic Waves: I. The Code and Test Cases.<br>International Astronomical Union Colloquium, 1994, 144, 503-505. | 0.1 | Ο         |
| 442 | Computation of the Ideal-MHD Continuous Spectrum in Axisymmetric Plasmas. Journal of Computational Physics, 1993, 105, 165-168.                                   | 1.9 | 42        |
| 443 | Total resonant absorption of acoustic oscillations in sunspots. Solar Physics, 1993, 147, 13-28.                                                                  | 1.0 | 24        |
| 444 | MHD spectroscopy: free boundary modes (ELMs) and external excitation of TAE modes. Plasma Physics and Controlled Fusion, 1993, 35, B277-B292.                     | 0.9 | 70        |
| 445 | Damping of global Alfven waves in tokamaks due to resonant absorption. Plasma Physics and<br>Controlled Fusion, 1992, 34, 1397-1422.                              | 0.9 | 56        |
| 446 | Time scales and efficiency of resonant absorption in periodically driven resistive plasmas. Journal of<br>Plasma Physics, 1992, 47, 139-162.                      | 0.7 | 29        |
| 447 | Linear resistive magnetohydrodynamic computations of resonant absorption of acoustic oscillations in sunspots. Astrophysical Journal, 1992, 384, 348.             | 1.6 | 45        |
| 448 | Analytical study of plasma heating by resonant absorption of the modified external kink mode. Journal of Plasma Physics, 1991, 45, 3-18.                          | 0.7 | 4         |
| 449 | On poloidal mode coupling in the continuous spectrum of 2D equilibria. Solar Physics, 1991, 133, 281-311.                                                         | 1.0 | 13        |
| 450 | Ideal quasimodes reviewed in resistive magnetohydrodynamics. Physical Review Letters, 1991, 66, 2871-2874.                                                        | 2.9 | 62        |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 451 | On the Time Scales and the Efficiency of Solar Coronal Loop Heating by Resonant Absorption. , 1991, , 486-488.                                                               |     | 1         |
| 452 | Numerical simulation of the stationary state of periodically driven coronal loops. Computer Physics Communications, 1990, 59, 75-84.                                         | 3.0 | 26        |
| 453 | Temporal evolution of resonant absorption in solar coronal loops. Computer Physics<br>Communications, 1990, 59, 95-103.                                                      | 3.0 | 29        |
| 454 | Main-sequence broadening in the double clusterh and Ξ persei. Astrophysics and Space Science, 1990,<br>169, 109-111.                                                         | 0.5 | 3         |
| 455 | Coronal loop reating by resonant absorption. Geophysical Monograph Series, 1990, , 257-262.                                                                                  | 0.1 | 1         |
| 456 | On the efficiency of coronal loop heating by resonant absorption. Astrophysical Journal, 1990, 360, 279.                                                                     | 1.6 | 98        |
| 457 | Numerical simulation of coronal heating by resonant absorption of Alfv�n waves. Solar Physics, 1989, 123, 83-115.                                                            | 1.0 | 121       |
| 458 | Alfvén-wave heating in resistive MHD. Journal of Plasma Physics, 1989, 42, 27-58.                                                                                            | 0.7 | 42        |
| 459 | The continuous spectrum of MHD waves in 2D solar loops and arcades. First results on poloidal mode coupling for poloidal magnetic fields. Solar Physics, 1987, 109, 265-286. | 1.0 | 17        |
| 460 | Viscous normal modes on coronal inhomogeneities and their role as a heating mechanism.<br>Astrophysical Journal, 1986, 304, 526.                                             | 1.6 | 19        |
| 461 | On the existence of the continuous spectrum of ideal MHD in a 2D magnetostatic equilibrium. Solar<br>Physics, 1985, 102, 51-66.                                              | 1.0 | 34        |
| 462 | Development of operation scenarios with high bootstrap, negative shear configuration for<br>large-aspect-ratio (LAR) bootstrap tokamak "KT-2" at KAERI. , 0, , .             |     | 2         |
| 463 | Suprathermal Particle Populations in the Solar Wind and Corona. , 0, , .                                                                                                     |     | 11        |
| 464 | A firehose-like aperiodic instability of the counter-beaming electron plasmas. Plasma Physics and<br>Controlled Fusion, 0, , .                                               | 0.9 | 3         |
| 465 | A Case for Electron-Astrophysics. Experimental Astronomy, 0, , 1.                                                                                                            | 1.6 | 11        |
| 466 | Novel features of electromagnetic waves in an isotropic degenerate electron-ion plasma. Plasma<br>Physics and Controlled Fusion, 0, , .                                      | 0.9 | 1         |
| 467 | Influence of coronal hole morphology on the solar wind speed at Earth. Astronomy and Astrophysics, 0, , .                                                                    | 2.1 | 4         |
| 468 | Explicit and Implicit Parallel Upwind Monotone Residual Distribution Solver for the Time Dependent<br>Ideal 3D Magnetohydrodynamic Equations on Unstructured Grids. , 0, , . |     | 0         |