Stefaan Poedts

List of Publications by Citations

Source: https://exaly.com/author-pdf/3230052/stefaan-poedts-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

446 papers

6,785 citations

39 h-index 61 g-index

516 ext. papers

7,706 ext. citations

3.5 avg, IF

6.28 L-index

#	Paper	IF	Citations
446	Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas 2004 ,		415
445	Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas 2010 ,		176
444	Damping of Coronal Loop Oscillations: Calculation of Resonantly Damped Kink Oscillations of One-dimensional Nonuniform Loops. <i>Astrophysical Journal</i> , 2004 , 606, 1223-1232	4.7	154
443	EUHFORIA: European heliospheric forecasting information asset. <i>Journal of Space Weather and Space Climate</i> , 2018 , 8, A35	2.5	131
442	MHD seismology of coronal loops using the period and damping of quasi-mode kink oscillations. <i>Astronomy and Astrophysics</i> , 2007 , 463, 333-338	5.1	126
441	Slow magnetoacoustic waves in coronal loops: EIT and TRACE. <i>Astronomy and Astrophysics</i> , 2001 , 370, 591-601	5.1	125
440	Numerical simulation of coronal heating by resonant absorption of Alfvħ waves. <i>Solar Physics</i> , 1989 , 123, 83-115	2.6	109
439	CASTOR: Normal-Mode Analysis of Resistive MHD Plasmas. <i>Journal of Computational Physics</i> , 1998 , 142, 271-303	4.1	107
438	The effect of curvature on quasi-modes in coronal loops. <i>Astronomy and Astrophysics</i> , 2004 , 424, 1065-1	057.14	97
437	On the efficiency of coronal loop heating by resonant absorption. <i>Astrophysical Journal</i> , 1990 , 360, 279	4.7	90
436	THE ROLE OF STREAMERS IN THE DEFLECTION OF CORONAL MASS EJECTIONS: COMPARISON BETWEENSTEREOTHREE-DIMENSIONAL RECONSTRUCTIONS AND NUMERICAL SIMULATIONS. <i>Astrophysical Journal</i> , 2012 , 744, 66	4.7	81
435	On waves and instabilities in pair-ion plasma. <i>Plasma Sources Science and Technology</i> , 2005 , 14, 485-491	3.5	67
434	MHD spectroscopy: free boundary modes (ELMs) and external excitation of TAE modes. <i>Plasma Physics and Controlled Fusion</i> , 1993 , 35, B277-B292	2	66
433	COSMOLOGICAL EFFECTS OF WEIBEL-TYPE INSTABILITIES. Astrophysical Journal, 2009, 693, 1133-1141	4.7	65
432	Electrostatic modes in multi-ion and pair-ion collisional plasmas. <i>Physics of Plasmas</i> , 2008 , 15, 072104	2.1	65
431	Destabilizing effects of the suprathermal populations in the solar wind. <i>Astronomy and Astrophysics</i> , 2015 , 582, A124	5.1	64
430	Energy flux of Alfvħ waves in weakly ionized plasma. <i>Astronomy and Astrophysics</i> , 2008 , 478, 553-558	5.1	60

429	The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations. <i>Solar Physics</i> , 2016 , 291, 2165-2179	2.6	60
428	Linking two consecutive nonmerging magnetic clouds with their solar sources. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		59
427	Counterstreaming magnetized plasmas with kappa distributions âll. Parallel wave propagation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 390, 168-174	4.3	56
426	Intensity variations in EIT shutterless mode: Waves or flows?. <i>Astronomy and Astrophysics</i> , 2004 , 415, 1141-1151	5.1	54
425	Ideal quasimodes reviewed in resistive magnetohydrodynamics. <i>Physical Review Letters</i> , 1991 , 66, 2871	- <i>2</i> /8/74	53
424	OBSERVATIONAL EVIDENCE OF TORUS INSTABILITY AS TRIGGER MECHANISM FOR CORONAL MASS EJECTIONS: THE 2011 AUGUST 4 FILAMENT ERUPTION. <i>Astrophysical Journal</i> , 2014 , 785, 88	4.7	52
423	Damping of global Alfven waves in tokamaks due to resonant absorption. <i>Plasma Physics and Controlled Fusion</i> , 1992 , 34, 1397-1422	2	51
422	Detailed comparison of downflows seen both in EIT 30.4 nm and Big Bear Hamovies. <i>Astronomy and Astrophysics</i> , 2005 , 443, 319-328	5.1	50
421	Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass Ejections. <i>Solar Physics</i> , 2013 , 284, 129-149	2.6	48
420	THE INTERNAL STRUCTURE OF CORONAL MASS EJECTIONS: ARE ALL REGULAR MAGNETIC CLOUDS FLUX ROPES?. <i>Astrophysical Journal</i> , 2009 , 695, L171-L175	4.7	48
419	Dual Maxwellian-Kappa modeling of the solar wind electrons: new clues on the temperature of Kappa populations. <i>Astronomy and Astrophysics</i> , 2017 , 602, A44	5.1	47
418	On some properties of linear and nonlinear waves in pair-ion plasmas. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2006 , 350, 375-379	2.3	47
417	On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks. <i>Astronomy and Astrophysics</i> , 2005 , 432, 331-339	5.1	47
416	Firehose instability in space plasmas with bi-kappa distributions. <i>Astronomy and Astrophysics</i> , 2009 , 494, 311-315	5.1	46
415	OBSERVATIONAL CHARACTERISTICS OF CORONAL MASS EJECTIONS WITHOUT LOW-CORONAL SIGNATURES. <i>Astrophysical Journal</i> , 2014 , 795, 49	4.7	43
414	Simulation of a Breakout Coronal Mass Ejection in the Solar Wind. Astrophysical Journal, 2007, 671, L77-	-L _β β	43
413	Inverse and normal coronal mass ejections: evolution up to 1 AU. <i>Astronomy and Astrophysics</i> , 2006 , 447, 727-733	5.1	42
412	Complex magnetohydrodynamic bow shock topology in field-aligned low-Iflow around a perfectly conducting cylinder. <i>Physics of Plasmas</i> , 1998 , 5, 4015-4027	2.1	41

411	CMEâlIME Interactions as Sources of CME Geoeffectiveness: The Formation of the Complex Ejecta and Intense Geomagnetic Storm in 2017 Early September. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 247, 21	8	39	
410	Modeling Jupiter's magnetosphere: Influence of the internal sources. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 2157-2172	2.6	39	
409	Shear-Flowâlhduced Wave Couplings in the Solar Wind. Astrophysical Journal, 1998, 505, 369-375	4.7	39	
408	Alfvħ-wave heating in resistive MHD. <i>Journal of Plasma Physics</i> , 1989 , 42, 27-58	2.7	39	
407	Linear resistive magnetohydrodynamic computations of resonant absorption of acoustic oscillations in sunspots. <i>Astrophysical Journal</i> , 1992 , 384, 348	4.7	39	
406	Clarifying the solar wind heat flux instabilities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 310-319	4.3	38	
405	SEPEM: A tool for statistical modeling the solar energetic particle environment. <i>Space Weather</i> , 2015 , 13, 406-426	3.7	37	
404	Proton firehose instability in bi-Kappa distributed plasmas. <i>Astronomy and Astrophysics</i> , 2011 , 534, A11	65.1	37	
403	Computation of the Ideal-MHD Continuous Spectrum in Axisymmetric Plasmas. <i>Journal of Computational Physics</i> , 1993 , 105, 165-168	4.1	37	
402	The effect of the solar wind on CME triggering by magnetic foot point shearing. <i>Astronomy and Astrophysics</i> , 2006 , 450, 793-803	5.1	35	
401	Instability of the parallel electromagnetic modes in Kappa distributed plasmas - I. Electron whistler-cyclotron modes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 410, 663-670	4.3	34	
400	Magnetohydrodynamics of Laboratory and Astrophysical Plasmas 2019,		34	
399	Firehose constraints of the bi-Kappa-distributed electrons: a zero-order approach for the suprathermal electrons in the solar wind. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 564-571	4.3	33	
398	ON THE INTERNAL STRUCTURE OF THE MAGNETIC FIELD IN MAGNETIC CLOUDS AND INTERPLANETARY CORONAL MASS EJECTIONS: WRITHE VERSUS TWIST. <i>Astrophysical Journal Letters</i> , 2011 , 738, L18	7.9	33	
397	Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. <i>Astronomy and Astrophysics</i> , 2019 , 626, A122	5.1	32	
396	Towards realistic parametrization of the kinetic anisotropy and the resulting instabilities in space plasmas. Electromagnetic electronagy clotron instability in the solar wind. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 3022-3033	4.3	32	
395	Analytical description of a neutral-induced tripole vortex in a plasma. <i>Physical Review Letters</i> , 2002 , 89, 265002	7.4	31	
394	On the existence of the continuous spectrum of ideal MHD in a 2D magnetostatic equilibrium. <i>Solar Physics</i> , 1985 , 102, 51-66	2.6	31	

(1990-2003)

393	Variation of coronal line widths on and off the disk. <i>Astronomy and Astrophysics</i> , 2003 , 400, 1065-1070	5.1	31
392	NUMERICAL MODELING OF THE INITIATION OF CORONAL MASS EJECTIONS IN ACTIVE REGION NOAA 9415. <i>Astrophysical Journal</i> , 2012 , 758, 117	4.7	30
391	On the shear flow instability and its applications to multicomponent plasmas. <i>Physics of Plasmas</i> , 2007 , 14, 072104	2.1	30
390	Modelling the initiation of coronal mass ejections: magnetic flux emergence versus shearing motions. <i>Astronomy and Astrophysics</i> , 2009 , 507, 441-452	5.1	29
389	How is the Jovian main auroral emission affected by the solar wind?. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 1960-1978	2.6	28
388	The Electron Firehose and Ordinary-Mode Instabilities in Space Plasmas. <i>Solar Physics</i> , 2014 , 289, 369-3	78 .6	28
387	A polytropic model for the solar wind. Advances in Space Research, 2011, 48, 1958-1966	2.4	28
386	The universally growing mode in the solar atmosphere: coronal heating by drift waves. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 918-930	4.3	28
385	RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14â¼4: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR. <i>Astrophysical Journal</i> , 2016 , 826, 55	4.7	28
384	Magnetohydrodynamic simulations of the ejection of a magnetic flux rope. <i>Astronomy and Astrophysics</i> , 2013 , 554, A77	5.1	27
383	Magnetic clouds seen at different locations in the heliosphere. <i>Annales Geophysicae</i> , 2008 , 26, 213-229	2	27
382	The COOLFluiD Framework: Design Solutions for High Performance Object Oriented Scientific Computing Software. <i>Lecture Notes in Computer Science</i> , 2005 , 279-286	0.9	27
381	The Pulsational Mode in the Presence of Dust Charge Fluctuations. <i>Physica Scripta</i> , 2002 , 65, 513-517	2.6	27
380	Time scales and efficiency of resonant absorption in periodically driven resistive plasmas. <i>Journal of Plasma Physics</i> , 1992 , 47, 139-162	2.7	27
379	Instability of the parallel electromagnetic modes in Kappa distributed plasmas âllı. Electromagnetic ionâllyclotron modes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 641-648	4.3	26
378	Observational evidence of Alfvħ wings at the Earth. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		26
377	Numerical simulation of the stationary state of periodically driven coronal loops. <i>Computer Physics Communications</i> , 1990 , 59, 75-84	4.2	26
376	Temporal evolution of resonant absorption in solar coronal loops. <i>Computer Physics Communications</i> , 1990 , 59, 95-103	4.2	26

375	On the effect of the background wind on the evolution of interplanetary shock waves. <i>Astronomy and Astrophysics</i> , 2005 , 430, 1099-1107	5.1	26
374	Multi-fluid Modeling of Magnetosonic Wave Propagation in the Solar Chromosphere: Effects of Impact Ionization and Radiative Recombination. <i>Astrophysical Journal</i> , 2017 , 836, 197	4.7	25
373	Analysis of low-frequency waves in inhomogeneous and bounded plasmas. <i>Physics of Plasmas</i> , 2004 , 11, 891-897	2.1	25
372	Effect of Radiation on Chromospheric Magnetic Reconnection: Reactive and Collisional Multi-fluid Simulations. <i>Astrophysical Journal</i> , 2017 , 842, 117	4.7	24
371	Particle-in-cell Simulations of Firehose Instability Driven by Bi-Kappa Electrons. <i>Astrophysical Journal Letters</i> , 2019 , 873, L20	7.9	24
370	A small mission concept to the SunâEarth Lagrangian L5 point for innovative solar, heliospheric and space weather science. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2016 , 146, 171-185	2	24
369	Effect of the Initial Shape of Coronal Mass Ejections on 3-D MHD Simulations and Geoeffectiveness Predictions. <i>Space Weather</i> , 2018 , 16, 754-771	3.7	24
368	The evolution of coronal mass ejections in the inner heliosphere: Implementing the spheromak model with EUHFORIA. <i>Astronomy and Astrophysics</i> , 2019 , 627, A111	5.1	24
367	Limits for the Firehose Instability in Space Plasmas. <i>Solar Physics</i> , 2009 , 258, 119-128	2.6	24
366	Alternative High-plasma Beta Regimes of Electron Heat-flux Instabilities in the Solar Wind. <i>Astrophysical Journal Letters</i> , 2020 , 900, L25	7.9	24
365	Modeling Space Plasma Dynamics with Anisotropic Kappa Distributions. <i>Thirty Years of Astronomical Discovery With UKIRT</i> , 2012 , 97-107	0.3	24
364	Beaming electromagnetic (or heat-flux) instabilities from the interplay with the electron temperature anisotropies. <i>Physics of Plasmas</i> , 2018 , 25, 082105	2.1	23
363	Shaping the solar wind temperature anisotropy by the interplay of electron and proton instabilities. <i>Astrophysics and Space Science</i> , 2017 , 362, 1	1.6	23
362	Simulating AIA observations of a flux rope ejection. <i>Astronomy and Astrophysics</i> , 2014 , 568, A120	5.1	23
361	On the existence of Weibel instability in a magnetized plasma. I. Parallel wave propagation. <i>Physics of Plasmas</i> , 2009 , 16, 012106	2.1	23
360	Observational evidence favors a resistive wave heating mechanism for coronal loops over a viscous phenomenon. <i>Astronomy and Astrophysics</i> , 2007 , 471, 311-314	5.1	23
359	Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock flows with multiple interacting shock fronts. <i>Physical Review Letters</i> , 2000 , 84, 5524-7	7.4	23
358	Effects of dust charge fluctuations on current-driven dust-ion-acoustic waves. <i>Physical Review E</i> , 2001 , 64, 066404	2.4	23

(2013-1994)

357	Stability of global Alfven waves (TAE, EAE) in JET tritium discharges. <i>Plasma Physics and Controlled Fusion</i> , 1994 , 36, 911-923	2	23	
356	Acoustic oscillations in a field-free cavity under solar small-scale bipolar magnetic canopy. <i>Annales Geophysicae</i> , 2008 , 26, 2983-2989	2	23	
355	The interplay of the solar wind proton core and halo populations: EMIC instability. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 6031-6047	2.6	23	
354	A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes. <i>Journal of Computational Physics</i> , 2016 , 318, 252-276	4.1	23	
353	Firehose instabilities triggered by the solar wind suprathermal electrons. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 5642-5648	4.3	23	
352	Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012. <i>Astronomy and Astrophysics</i> , 2015 , 577, A136	5.1	22	
351	FARLEY-BUNEMAN INSTABILITY IN THE SOLAR CHROMOSPHERE. Astrophysical Journal, 2009, 706, L12-	·141 / 5	22	
350	Nonmodal Cascade in the Compressible Solar Atmosphere: Self-Heating, an Alternative Way to Enhance Wave Heating. <i>Astrophysical Journal</i> , 2006 , 642, L73-L76	4.7	22	
349	Total resonant absorption of acoustic oscillations in sunspots. <i>Solar Physics</i> , 1993 , 147, 13-28	2.6	22	
348	Quasi-linear approach of the whistler heat-flux instability in the solar wind. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 4498-4507	4.3	21	
347	Electromagnetic electron whistler-cyclotron instability in bi-Kappa distributed plasmas. <i>Astronomy and Astrophysics</i> , 2013 , 554, A64	5.1	21	
346	Counterstreaming magnetized plasmas with kappa distributions IP. II. Perpendicular wave propagation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 362-370	4.3	21	
345	Models of Solar Wind Structures and Their Interaction with the Earthâl Space Environment. <i>Space Science Reviews</i> , 2009 , 147, 233-270	7.5	21	
344	NONLINEAR MHD SIMULATIONS OF WAVE DISSIPATION IN FLUX TUBES. <i>Solar Physics</i> , 1997 , 172, 45-52	2.6	21	
343	Initiation of Coronal Mass Ejections by Magnetic Flux Emergence in the Framework of the Breakout Model. <i>Astrophysical Journal</i> , 2008 , 689, L157-L160	4.7	21	
342	Stationary Two-Dimensional Magnetohydrodynamic Flows with Shocks: Characteristic Analysis and Grid Convergence Study. <i>Journal of Computational Physics</i> , 2001 , 166, 28-62	4.1	21	
341	On the quality of resonant absorption as a coronal loop heating mechanism. <i>Solar Physics</i> , 1994 , 151, 271-304	2.6	21	
340	Forecasting the Earthâld radiation belts and modelling solar energetic particle events: Recent results from SPACECAST. <i>Journal of Space Weather and Space Climate</i> , 2013 , 3, A20	2.5	20	

339	Drift waves in the corona: heating and acceleration of ions at frequencies far below the gyrofrequency. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 1835-1839	4.3	20
338	A new paradigm for solar coronal heating. <i>Europhysics Letters</i> , 2009 , 86, 39001	1.6	20
337	Comparison between 2.5D and 3D simulations of coronal mass ejections. <i>Astronomy and Astrophysics</i> , 2007 , 470, 359-365	5.1	20
336	The interplay of Kappa and core populations in the solar wind: Electromagnetic electron cyclotron instability. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 9395-9406	2.6	19
335	Characteristic analysis of a complex two-dimensional magnetohydrodynamic bow shock flow with steady compound shocks. <i>Physics of Plasmas</i> , 1999 , 6, 954-969	2.1	19
334	Acoustic oscillations in the field-free, gravitationally stratified cavities under solar bipolar magnetic canopies. <i>Astronomy and Astrophysics</i> , 2009 , 505, 763-770	5.1	19
333	Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. <i>Astronomy and Astrophysics</i> , 2019 , 622, A28	5.1	18
332	A GPU-enabled Finite Volume solver for global magnetospheric simulations on unstructured grids. <i>Computer Physics Communications</i> , 2014 , 185, 2538-2557	4.2	18
331	Is the Weibel instability enhanced by the suprathermal populations or not?. <i>Physics of Plasmas</i> , 2010 , 17, 062112	2.1	18
330	Three frontside full halo coronal mass ejections with a nontypical geomagnetic response. <i>Space Weather</i> , 2009 , 7, n/a-n/a	3.7	18
329	EFFECTS OF ELECTRONS ON THE ELECTROMAGNETIC ION CYCLOTRON INSTABILITY: SOLAR WIND IMPLICATIONS. <i>Astrophysical Journal</i> , 2015 , 814, 34	4.7	17
328	Temperature anisotropy instabilities stimulated by the interplay of the core and halo electrons in space plasmas. <i>Physics of Plasmas</i> , 2018 , 25, 022902	2.1	17
327	Growing drift-Alfvħ modes in collisional solar plasma. <i>Astronomy and Astrophysics</i> , 2006 , 458, 635-640	5.1	17
326	Ion temperature gradient instability in a dusty plasma. <i>Physical Review E</i> , 2004 , 69, 056404	2.4	17
325	Assessing the Performance of EUHFORIA Modeling the Background Solar Wind. <i>Solar Physics</i> , 2019 , 294, 170	2.6	17
324	Whistler instability stimulated by the suprathermal electrons present in space plasmas. <i>Astrophysics and Space Science</i> , 2019 , 364, 1	1.6	16
323	Modelling large solar proton events with the shock-and-particle model. <i>Journal of Space Weather and Space Climate</i> , 2015 , 5, A12	2.5	16
322	Effect of gravitational stratification on the propagation of a CME. <i>Astronomy and Astrophysics</i> , 2013 , 560, A38	5.1	16

(2010-2009)

321	Kinetic instability of ion acoustic mode in permeating plasmas. <i>Physics of Plasmas</i> , 2009 , 16, 074501	2.1	16	
320	On the combination of ACE data with numerical simulations to determine the initial characteristics of a CME. <i>Astronomy and Astrophysics</i> , 2008 , 492, L29-L32	5.1	16	
319	Unstable drift mode driven by shear plasma flow in solar spicules. <i>Astronomy and Astrophysics</i> , 2007 , 471, 289-293	5.1	16	
318	Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance Environment. <i>Scientific Programming</i> , 2006 , 14, 111-139	1.4	16	
317	Spatial aspect of wave transformations in astrophysical flows. <i>Astronomy and Astrophysics</i> , 2001 , 374, 337-347	5.1	16	
316	Viscous normal modes on coronal inhomogeneities and their role as a heating mechanism. <i>Astrophysical Journal</i> , 1986 , 304, 526	4:7	16	
315	MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY. <i>Astrophysical Journal</i> , 2016 , 832, 64	4.7	16	
314	Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas. <i>Physics of Plasmas</i> , 2017 , 24, 033701	2.1	15	
313	Effects of suprathermal electrons on the proton temperature anisotropy in space plasmas: Electromagnetic ion-cyclotron instability. <i>Astrophysics and Space Science</i> , 2016 , 361, 1	1.6	15	
312	Fully-implicit finite volume method for the ideal two-fluid plasma model. <i>Computer Physics Communications</i> , 2018 , 231, 31-44	4.2	15	
311	Multipoint Observations of the June 2012 Interacting Interplanetary Flux Ropes. <i>Frontiers in Astronomy and Space Sciences</i> , 2019 , 6,	3.8	15	
310	Particle-in-cell Simulations of the Whistler Heat-flux Instability in Solar Wind Conditions. <i>Astrophysical Journal Letters</i> , 2019 , 882,	7.9	15	
309	DOME-SHAPED EUV WAVES FROM ROTATING ACTIVE REGIONS. <i>Astrophysical Journal Letters</i> , 2012 , 747, L21	7.9	15	
308	SWIFF: Space weather integrated forecasting framework. <i>Journal of Space Weather and Space Climate</i> , 2013 , 3, A05	2.5	15	
307	Numerical simulations of homologous coronal mass ejections in the solar wind. <i>Astronomy and Astrophysics</i> , 2009 , 501, 1123-1130	5.1	15	
306	Electric fields in solar magnetic structures due to gradient-driven instabilities: heating and acceleration of particles. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 2147-2152	4.3	15	
305	Models for coronal mass ejections. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2011 , 73, 1148-1	1255	15	
304	KINETIC INSTABILITY OF DRIFT-ALFVN WAVES IN SOLAR CORONA AND STOCHASTIC HEATING. Astrophysical Journal, 2010 , 719, 1335-1342	4.7	15	

303	Instability of electrostatic modes in partially ionized plasma. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2006 , 348, 346-354	2.3	15
302	Magnetohydrodynamic continua and stratification induced Alfvħ eigenmodes in coronal magnetic loops. <i>Physical Review Letters</i> , 1996 , 76, 567-570	7.4	15
301	Application of the Implicitly Updated Arnoldi Method with a Complex Shift-and-Invert Strategy in MHD. <i>Journal of Computational Physics</i> , 1995 , 118, 320-328	4.1	15
300	The Interplay of the Solar Wind Core and Suprathermal Electrons: A Quasilinear Approach for Firehose Instability. <i>Astrophysical Journal</i> , 2019 , 871, 237	4.7	14
299	Solar Decameter Spikes. Solar Physics, 2014, 289, 1701-1714	2.6	14
298	Variation of Proton Flux Profiles with the Observerâd Latitude in Simulated Gradual SEP Events. <i>Solar Physics</i> , 2014 , 289, 1745-1762	2.6	14
297	Statistical properties of coronal hole rotation rates: Are they linked to the solar interior?. <i>Astronomy and Astrophysics</i> , 2017 , 603, A134	5.1	14
296	Study of Multiple Coronal Mass Ejections at Solar Minimum Conditions. <i>Solar Physics</i> , 2012 , 281, 223	2.6	14
295	GRADSPH: A parallel smoothed particle hydrodynamics code for self-gravitating astrophysical fluid dynamics. <i>Computer Physics Communications</i> , 2009 , 180, 1164-1182	4.2	14
294	Why should the latitude of the observer be considered when modeling gradual proton events? An insight using the concept of cobpoint. <i>Advances in Space Research</i> , 2011 , 47, 2140-2151	2.4	14
293	Calculating magnetohydrodynamic flow spectra. <i>Computer Physics Communications</i> , 1997 , 106, 39-52	4.2	14
292	Properties of the acoustic mode in partially ionized and dusty plasmas. <i>Physics of Plasmas</i> , 2006 , 13, 05,	212013	14
291	IonâEcoustic waves in dusty plasma with charge fluctuations. <i>Physics of Plasmas</i> , 2002 , 9, 1464-1467	2.1	14
290	The continuous spectrum of MHD waves in 2D solar loops and arcades. First results on poloidal mode coupling for poloidal magnetic fields. <i>Solar Physics</i> , 1987 , 109, 265-286	2.6	14
289	Multipoint Study of Successive Coronal Mass Ejections Driving Moderate Disturbances at 1 au. <i>Astrophysical Journal</i> , 2019 , 878, 37	4.7	13
288	Halo coronal mass ejections during Solar Cycle 24: reconstruction of the global scenario and geoeffectiveness. <i>Journal of Space Weather and Space Climate</i> , 2018 , 8, A09	2.5	13
287	Simulations of the Earth's magnetosphere embedded in sub-Alfvhic solar wind on 24 and 25 May 2002. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 8517-8528	2.6	13
286	Features of ion acoustic waves in collisional plasmas. <i>Physics of Plasmas</i> , 2010 , 17, 022104	2.1	13

(2011-2008)

285	Modeling of the magnetic field in the magnetosheath region. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		13	
284	Electrostatic waves in bounded dusty magnetoplasma. <i>Physics of Plasmas</i> , 2004 , 11, 2178-2181	2.1	13	
283	Modelling of Solar Wind, CME Initiation and CME Propagation. Space Science Reviews, 2005, 121, 91-104	1 7.5	13	
282	Are galactic magnetohydrodynamic waves coupled?. <i>Monthly Notices of the Royal Astronomical Society</i> , 1999 , 307, L31-L36	4.3	13	
281	Stationary slow shocks in the magnetosheath for solar wind conditions with Dournal of Geophysical Research, 1999 , 104, 22401-22406		13	
280	On poloidal mode coupling in the continuous spectrum of 2D equilibria. <i>Solar Physics</i> , 1991 , 133, 281-37	12.6	13	
279	Reconstructing Coronal Hole Areas With EUHFORIA and Adapted WSA Model: Optimizing the Model Parameters. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 8280-8297	2.6	13	
278	The Magnetic Morphology of Magnetic Clouds: Multi-spacecraft Investigation of Twisted and Writhed Coronal Mass Ejections. <i>Astrophysical Journal</i> , 2019 , 870, 100	4.7	13	
277	Ultrahigh-resolution model of a breakout CME embedded in the solar wind. <i>Astronomy and Astrophysics</i> , 2018 , 620, A57	5.1	13	
276	Stimulated Mirror Instability From the Interplay of Anisotropic Protons and Electrons, and their Suprathermal Populations. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 1754	2.6	12	
275	DISSIPATION OF PARALLEL AND OBLIQUE ALFVN-CYCLOTRON WAVESâlMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND. <i>Astrophysical Journal</i> , 2015 , 814, 33	4.7	12	
274	SIDE MAGNETIC RECONNECTIONS INDUCED BY CORONAL MASS EJECTIONS: OBSERVATIONS AND SIMULATIONS. <i>Astrophysical Journal</i> , 2010 , 718, 251-265	4.7	12	
273	Collisional energy transfer in two-component plasmas. <i>Physics of Plasmas</i> , 2008 , 15, 092107	2.1	12	
272	Growing drift-cyclotron modes in the hot solar atmosphere. <i>Astronomy and Astrophysics</i> , 2008 , 482, 653	8- 6 56	12	
271	Jeans instability of an inhomogeneous streaming dusty plasma 2003, 61, 109-120		12	
270	Quasilinear approach of the cumulative whistler instability in fast solar wind: Constraints of electron temperature anisotropy. <i>Astronomy and Astrophysics</i> , 2019 , 627, A76	5.1	11	
269	On quantum plasma: A plea for a common sense. <i>Europhysics Letters</i> , 2012 , 99, 25001	1.6	11	
268	Magnetic helicity balance during a filament eruption that occurred in active region NOAA 9682. <i>Astronomy and Astrophysics</i> , 2011 , 530, A36	5.1	11	

267	Fluid modeling of the electron flow driven ion acoustic mode in a collisional plasma with magnetized electrons. <i>Physics of Plasmas</i> , 2006 , 13, 122103	2.1	11
266	Disintegration and reformation of intermediate-shock segments in three-dimensional MHD bow shock flows. <i>Journal of Geophysical Research</i> , 2001 , 106, 30023-30037		11
265	The initiation of coronal mass ejections by magnetic flux emergence. <i>Astronomy and Astrophysics</i> , 2006 , 459, 927-934	5.1	11
264	On the effects of suprathermal populations in dusty plasmas: The case of dust-ion-acoustic waves. <i>Planetary and Space Science</i> , 2018 , 156, 130-138	2	11
263	The Storm of Decameter Spikes During the Event of 14 June 2012. Solar Physics, 2016, 291, 211-228	2.6	10
262	A Numerical Study of the Response of the Coronal Magnetic Field to Flux Emergence. <i>Solar Physics</i> , 2012 , 280, 389-405	2.6	10
261	SELF-HEATING OF CORONA BY ELECTROSTATIC FIELDS DRIVEN BY SHEARED FLOWS. <i>Astrophysical Journal</i> , 2012 , 748, 90	4.7	10
260	Low-frequency waves in bounded streaming plasma. <i>Physics of Plasmas</i> , 2005 , 12, 064501	2.1	10
259	Using radio triangulation to understand the origin of two subsequent type II radio bursts. <i>Astronomy and Astrophysics</i> , 2020 , 639, A56	5.1	10
258	On the theory of MAG waves and a comparison with sunspot observations from CDS/SoHO. <i>Astronomy and Astrophysics</i> , 2002 , 395, 263-277	5.1	10
257	Decameter U-burst Harmonic Pair from a High Loop. Solar Physics, 2015, 290, 181-192	2.6	9
256	Solar signatures and eruption mechanism of the August 14, 2010 coronal mass ejection (CME). <i>Journal of Space Weather and Space Climate</i> , 2017 , 7, A7	2.5	9
255	Quasilinear saturation of the aperiodic ordinary mode streaming instability. <i>Physics of Plasmas</i> , 2015 , 22, 092301	2.1	9
254	Fine and Superfine Structure of the Decameterâllectometer Type II Burst on 7 June 2011. <i>Solar Physics</i> , 2015 , 290, 2031-2042	2.6	9
253	Electron streams formation and secondary two stream instability onset in the post-saturation regime of the classical Weibel instability. <i>Physics of Plasmas</i> , 2011 , 18, 052104	2.1	9
252	Global convective cell formation in pair-ion plasmas. <i>Physics of Plasmas</i> , 2008 , 15, 044501	2.1	9
251	Amplification of compressional magnetohydrodynamic waves in systems with forced entropy oscillations. <i>Physical Review E</i> , 2007 , 76, 046404	2.4	9
250	Modifications to the resistive MHD spectrum due to changes in the equilibrium. <i>Plasma Physics and Controlled Fusion</i> , 2007 , 49, 261-271	2	9

(2002-2007)

249	Quantifying Shear-induced Wave Transformations in the Solar Wind. <i>Astrophysical Journal</i> , 2007 , 664, 549-555	4.7	9
248	âBwing Absorptionâlbf fast magnetosonic waves in inhomogeneous media. <i>Astronomy and Astrophysics</i> , 2005 , 429, 767-777	5.1	9
247	Electromagnetic Ionâ l bn Instabilities in Space Plasmas: Effects of Suprathermal Populations. <i>Astrophysical Journal</i> , 2020 , 899, 20	4.7	9
246	Suprathermal Spontaneous Emissions in \(\text{d} \) distributed Plasmas. \(Astrophysical Journal Letters, \) 2018, 868, L25	7.9	9
245	Interplanetary spread of solar energetic protons near a high-speed solar wind stream. <i>Astronomy and Astrophysics</i> , 2019 , 624, A47	5.1	8
244	SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager. Solar Physics, 2013, 286, 185-	190	8
243	DYNAMICS OF A SOLAR PROMINENCE TORNADO OBSERVED BYSDO/AIA ON 2012 NOVEMBER 7â B . <i>Astrophysical Journal</i> , 2015 , 810, 89	4.7	8
242	On the role of perpendicular electron collisions in drift and acoustic wave instabilities. <i>Physics of Plasmas</i> , 2009 , 16, 022101	2.1	8
241	Solar nanoflares and other smaller energy release events as growing drift waves. <i>Physics of Plasmas</i> , 2009 , 16, 092902	2.1	8
240	Acceleration of soliton by nonlinear Landau damping of dust-helical waves. <i>Physics of Plasmas</i> , 2009 , 16, 053702	2.1	8
239	Note on the role of friction-induced momentum conservation in the collisional drift wave instability. <i>Physics of Plasmas</i> , 2008 , 15, 034504	2.1	8
238	Comment on "Heating of the solar corona by dissipative Alfvħ solitons". <i>Physical Review Letters</i> , 2007 , 98, 049501; discussion 049502	7.4	8
237	On the properties of electrostatic drift and sound modes in radially and axially inhomogeneous bounded plasmas. <i>Physics of Plasmas</i> , 2007 , 14, 112106	2.1	8
236	Collisional instability of the drift wave in multi-component plasmas. <i>Planetary and Space Science</i> , 2006 , 54, 695-700	2	8
235	Electrostatic perturbations in partially ionized plasma with the effects of ionization and recombination. <i>Physics of Plasmas</i> , 2004 , 11, 4188-4195	2.1	8
234	Computer simulations of solar plasmas. <i>Space Science Reviews</i> , 2003 , 107, 63-80	7.5	8
233	Solar coronal loop oscillations: theory of resonantly damped oscillations and comparison with observations. <i>AIP Conference Proceedings</i> , 2005 ,	O	8
232	Equilibrium Properties of a Gravitating Dusty Plasma. <i>Physica Scripta</i> , 2002 , 66, 269-272	2.6	8

231	The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for Power-Law-Distributed Solar Data. <i>Solar Physics</i> , 2016 , 291, 1561-1576	2.6	8
230	Solar Flare Prediction Using Magnetic Field Diagnostics above the Photosphere. <i>Astrophysical Journal</i> , 2020 , 896, 119	4.7	7
229	The effect of drifts on the decay phase of SEP events. Astronomy and Astrophysics, 2020, 634, A82	5.1	7
228	Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 3568-3576	4.3	7
227	Suprathermal Particle Populations in the Solar Wind and Corona 2012,		7
226	Validation of CME Detection Software (CACTus) by Means of Simulated Data, and Analysis of Projection Effects on CME Velocity Measurements. <i>Solar Physics</i> , 2011 , 270, 253-272	2.6	7
225	Resonant Weibel instability in counterstreaming plasmas with temperature anisotropies. <i>Journal of Plasma Physics</i> , 2010 , 76, 49-56	2.7	7
224	Gas acoustic and ion acoustic waves in partially ionized plasmas with magnetized electrons. <i>Physics of Plasmas</i> , 2007 , 14, 032106	2.1	7
223	Electromagnetic ion acoustic perturbations in spatially varying plasma. <i>Physics of Plasmas</i> , 2007 , 14, 03-	4 5 0 <u>/</u> 4	7
222	Acoustic phenomena in electrostatic dusty plasma shear flows. <i>Physics of Plasmas</i> , 2000 , 7, 3204-3213	2.1	7
221	Magnetic helicity and active filament configuration. Astronomy and Astrophysics, 2009, 506, 895-900	5.1	7
220	Toward a general quasi-linear approach for the instabilities of bi-Kappa plasmas. Whistler instability. <i>Plasma Physics and Controlled Fusion</i> , 2021 , 63, 025011	2	7
219	Two-fluid Modeling of Acoustic Wave Propagation in Gravitationally Stratified Isothermal Media. <i>Astrophysical Journal</i> , 2021 , 911, 119	4.7	7
218	Effect of the solar wind density on the evolution of normal and inverse coronal mass ejections. <i>Astronomy and Astrophysics</i> , 2019 , 632, A89	5.1	7
217	Quasi-electrostatic twisted waves in Lorentzian dusty plasmas. <i>Planetary and Space Science</i> , 2018 , 156, 139-146	2	7
216	Plasma heating by magnetoacoustic wave propagation in the vicinity of a 2.5D magnetic null-point. <i>Astronomy and Astrophysics</i> , 2019 , 623, A81	5.1	6
215	Low Geo-Effectiveness of Fast Halo CMEs Related to the 12 X-Class Flares in 2002. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027529	2.6	6
214	Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points. <i>Astrophysical Journal Letters</i> , 2018 , 855, L21	7.9	6

213	MHD Kelvin-Helmholtz instability in the anisotropic solar wind plasma. <i>Physics of Plasmas</i> , 2018 , 25, 062	9203	6
212	Slurm: Fluid particle-in-cell code for plasma modeling. Computer Physics Communications, 2019, 235, 16-	· 2 42	6
211	Numerical Simulations of Dome-Shaped EUV Waves from Different Active-Region Configurations. <i>Solar Physics</i> , 2013 , 284, 515-539	2.6	6
210	Space Weather Prediction and Exascale Computing. <i>Computing in Science and Engineering</i> , 2013 , 15, 68-	7<u>6</u>. 5	6
209	Investigation of dynamics of self-similarly evolving magnetic clouds. <i>Astronomy and Astrophysics</i> , 2011 , 526, A22	5.1	6
208	Kinetic instability of the dust acoustic mode in inhomogeneous, partially magnetized plasma with both positively and negatively charged grains. <i>Physical Review E</i> , 2010 , 82, 026411	2.4	6
207	Two-dimensional equilibrium in coronal magnetostatic flux tubes: an accurate equilibrium solver. <i>Computer Physics Communications</i> , 1997 , 106, 21-38	4.2	6
206	Unstable ion sound in plasmas with drifting electrons. European Physical Journal D, 2006 , 40, 257-262	1.3	6
205	Transient shear instability of differentially rotating and self-gravitating dusty plasma. <i>Physics of Plasmas</i> , 2004 , 11, 1655-1662	2.1	6
204	Interchange mode in the presence of dust. <i>Physical Review E</i> , 2003 , 67, 026410	2.4	6
204	Interchange mode in the presence of dust. <i>Physical Review E</i> , 2003 , 67, 026410 Three-wave interaction in a self-gravitating fluid. <i>Physical Review Letters</i> , 2002 , 89, 131102	2.4 7·4	6
<u> </u>		7.4	
203	Three-wave interaction in a self-gravitating fluid. <i>Physical Review Letters</i> , 2002 , 89, 131102	7.4	6
203	Three-wave interaction in a self-gravitating fluid. <i>Physical Review Letters</i> , 2002 , 89, 131102 Characteristics of solar wind suprathermal halo electrons. <i>Astronomy and Astrophysics</i> , 2020 , 642, A130 Implementing the MULTI-VP coronal model in EUHFORIA: Test case results and comparisons with	7·4 5.1	6
203	Three-wave interaction in a self-gravitating fluid. <i>Physical Review Letters</i> , 2002 , 89, 131102 Characteristics of solar wind suprathermal halo electrons. <i>Astronomy and Astrophysics</i> , 2020 , 642, A130 Implementing the MULTI-VP coronal model in EUHFORIA: Test case results and comparisons with the WSA coronal model. <i>Astronomy and Astrophysics</i> , 2021 , 648, A35 A Self-consistent Simulation of Proton Acceleration and Transport Near a High-speed Solar Wind	7.4 5.1 5.1	6 6
203	Three-wave interaction in a self-gravitating fluid. <i>Physical Review Letters</i> , 2002 , 89, 131102 Characteristics of solar wind suprathermal halo electrons. <i>Astronomy and Astrophysics</i> , 2020 , 642, A130 Implementing the MULTI-VP coronal model in EUHFORIA: Test case results and comparisons with the WSA coronal model. <i>Astronomy and Astrophysics</i> , 2021 , 648, A35 A Self-consistent Simulation of Proton Acceleration and Transport Near a High-speed Solar Wind Stream. <i>Astrophysical Journal Letters</i> , 2021 , 908, L26 A GPU-enabled implicit Finite Volume solver for the ideal two-fluid plasma model on unstructured	7.4 5.1 5.1 7.9	6666
203 202 201 200	Three-wave interaction in a self-gravitating fluid. <i>Physical Review Letters</i> , 2002 , 89, 131102 Characteristics of solar wind suprathermal halo electrons. <i>Astronomy and Astrophysics</i> , 2020 , 642, A130 Implementing the MULTI-VP coronal model in EUHFORIA: Test case results and comparisons with the WSA coronal model. <i>Astronomy and Astrophysics</i> , 2021 , 648, A35 A Self-consistent Simulation of Proton Acceleration and Transport Near a High-speed Solar Wind Stream. <i>Astrophysical Journal Letters</i> , 2021 , 908, L26 A GPU-enabled implicit Finite Volume solver for the ideal two-fluid plasma model on unstructured grids. <i>Computer Physics Communications</i> , 2019 , 239, 16-32 Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for the Solar	7.4 5.1 5.1 7.9	66665

195	The role of photospheric shearing motions in a filament eruption related to the 2010 April 3 coronal mass ejection. <i>Astronomy and Astrophysics</i> , 2012 , 537, A28	5.1	5
194	Modeling of Local Magnetic Field Enhancements within Solar Flux Ropes. <i>Solar Physics</i> , 2010 , 261, 271-2	2 8 06	5
193	Ion thermal effects in oscillating multi-ion plasma sheath theory. <i>Physics of Plasmas</i> , 2008 , 15, 123505	2.1	5
192	Initiation of cmes by magnetic flux emergence. <i>Journal of Astrophysics and Astronomy</i> , 2006 , 27, 159-16	61.4	5
191	Drift-Alfvħ eigenmodes in inhomogeneous plasma. <i>Physics of Plasmas</i> , 2006 , 13, 032107	2.1	5
190	Unstable kinetic Alfvħ wave in partially ionized plasma. <i>Planetary and Space Science</i> , 2006 , 54, 641-644	2	5
189	On the effect of the inhomogeneous subsurface flows on the high degree solarp-modes. <i>Astronomy and Astrophysics</i> , 2005 , 438, 1083-1097	5.1	5
188	Monotone Residual Distribution Schemes for the Ideal Magnetohydrodynamic Equations on Unstructured Grids. <i>AIAA Journal</i> , 2001 , 39, 1532-1541	2.1	5
187	ACOUSTICS OF KINEMATICALLY COMPLEX SHEAR FLOWS. <i>Journal of Computational Acoustics</i> , 2001 , 09, 869-888		5
186	Visualization of resonant absorption in solar coronal loops by simulation of soft x-ray images. <i>Computers in Physics</i> , 1996 , 10, 573		5
185	Magnetohydrodynamic spectroscopy: Large scale computation of the spectrum of waves in plasmas. <i>Future Generation Computer Systems</i> , 1994 , 10, 339-343	7.5	5
184	A Versatile Numerical Method for the Multi-Fluid Plasma Model in Partially- and Fully-Ionized Plasmas. <i>Journal of Physics: Conference Series</i> , 2018 , 1031, 012015	0.3	5
183	Modelling a multi-spacecraft coronal mass ejection encounter with EUHFORIA. <i>Astronomy and Astrophysics</i> , 2021 , 652, A27	5.1	5
182	Long-period oscillations of active region patterns: least-squares mapping on second-order curves. <i>Astronomy and Astrophysics</i> , 2017 , 597, A93	5.1	4
181	Ion acoustic wave damping in a non-Maxwellian bi-ion electron plasma in the presence of dust. <i>Physics of Plasmas</i> , 2017 , 24, 093708	2.1	4
180	On the Dependency between the Peak Velocity of High-speed Solar Wind Streams near Earth and the Area of Their Solar Source Coronal Holes. <i>Astrophysical Journal Letters</i> , 2020 , 897, L17	7.9	4
179	Numerical simulations of the lower solar atmosphere heating by two-fluid nonlinear Alfvħ waves. <i>Astronomy and Astrophysics</i> , 2020 , 639, A45	5.1	4
178	Solar Illumination Control of the Polar Wind. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 11,468-11,480	2.6	4

177	A new Particle-in-Cell method for modeling magnetized fluids. <i>Computer Physics Communications</i> , 2017 , 210, 79-91	4.2	4	
176	Numerical Simulations of a Flux Rope Ejection. <i>Journal of Astrophysics and Astronomy</i> , 2015 , 36, 123-155	1.4	4	
175	Magnetic clouds in the solar wind: a numerical assessment of analytical models. <i>Astronomy and Astrophysics</i> , 2011 , 536, A100	5.1	4	
174	CONSISTENT SELF-SIMILAR MAGNETOHYDRODYNAMICS EVOLUTION OF CORONAL TRANSIENTS. <i>Astrophysical Journal</i> , 2010 , 712, 565-573	4.7	4	
173	Plasma flows around magnetic obstacles in the solar wind. <i>Astronomy and Astrophysics</i> , 2007 , 475, 1093-	ţ.1 100	4	
172	Does spiral galaxy IC´342 exhibit shear induced wave transformations!?. <i>Astronomy and Astrophysics</i> , 2002 , 385, 32-38	5.1	4	
171	Dynamics of hot filaments in a tokamak plasma. <i>Journal of Plasma Physics</i> , 1998 , 59, 277-302	2.7	4	
170	Analytical study of plasma heating by resonant absorption of the modified external kink mode. <i>Journal of Plasma Physics</i> , 1991 , 45, 3-18	2.7	4	
169	EUropean Heliospheric FORecasting Information Asset 2.0. <i>Journal of Space Weather and Space Climate</i> , 2020 , 10, 57	2.5	4	
168	Twisted waves in symmetric and asymmetric bi-ion kappa-distributed plasmas. <i>Physics of Plasmas</i> , 2020 , 27, 122904	2.1	4	
167	How Alfvħ waves induce compressive flows in the neighborhood of a 2.5D magnetic null-point. <i>Scientific Reports</i> , 2020 , 10, 15603	4.9	4	
166	Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft. <i>Astrophysical Journal Letters</i> , 2021 , 916, L15	7.9	4	
165	Constraints for the aperiodic O-mode streaming instability. <i>Physics of Plasmas</i> , 2015 , 22, 012102	2.1	3	
164	Improving Predictions of High-Latitude Coronal Mass Ejections Throughout the Heliosphere. <i>Space Weather</i> , 2020 , 18, e2019SW002246	3.7	3	
163	The Virtual Space Weather Modelling Centre. <i>Journal of Space Weather and Space Climate</i> , 2020 , 10, 14	2.5	3	
162	Association between Tornadoes and Instability of Hosting Prominences. <i>Astrophysical Journal</i> , 2018 , 861, 112	4.7	3	
161	Ion acoustic mode in permeating plasmas. <i>Journal of Physics: Conference Series</i> , 2014 , 511, 012010	0.3	3	
160	Acceleration of dust particles by vortex ring. <i>Journal of Plasma Physics</i> , 2011 , 77, 155-162	2.7	3	

159	Shear flow-driven electrostatic instabilities in low density and low temperature pair-ion plasmas with and without electrons. <i>Physics of Plasmas</i> , 2011 , 18, 052108	2.1	3
158	Diamagnetic current does not produce an instability in the solar corona. <i>Astronomy and Astrophysics</i> , 2009 , 503, 591-593	5.1	3
157	Weak and strong regimes of incompressible magnetohydrodynamic turbulence. <i>Physics of Plasmas</i> , 2009 , 16, 072304	2.1	3
156	Existence of Dust Atoms & Modified OML Theory 2011 ,		3
155	Self-heating in kinematically complex magnetohydrodynamic flows. <i>Physics of Plasmas</i> , 2012 , 19, 01290	1 2.1	3
154	Reply to the Comment by P. K. Shukla and M. Akbari-Moghanjoughi. <i>Europhysics Letters</i> , 2012 , 99, 65002	21.6	3
153	A data parallel pseudo-spectral semi-implicit magnetohydrodynamics code. <i>Lecture Notes in Computer Science</i> , 1997 , 190-199	0.9	3
152	Modeling of the three-dimensional motion of toroidal magnetic clouds in the inner heliosphere. <i>Astronomy and Astrophysics</i> , 2007 , 466, 357-365	5.1	3
151	Effects of ionization on the collisional streaming instability. <i>Physics of Plasmas</i> , 2005 , 12, 112103	2.1	3
150	A Survey of Field-Aligned Mach Number and Plasma Beta in the Solar Wind. <i>Space Science Reviews</i> , 2001 , 97, 201-204	7.5	3
149	Linear and nonlinear electrostatic modes in a nonuniform magnetized electron plasma. <i>Physics of Plasmas</i> , 2001 , 8, 3165-3176	2.1	3
148	Velocity shear driven electron skin size vortices. <i>Physics of Plasmas</i> , 2001 , 8, 3913-3920	2.1	3
147	Monotone residual distribution schemes for the ideal 2D magnetohydrodynamic equations on unstructured grids 1999 ,		3
146	Parallel magnetohydrodynamics on the Cray T3D. Future Generation Computer Systems, 1996 , 12, 307-32	2 3 .5	3
145	3D nonlinear wave heating of coronal loops. <i>Space Science Reviews</i> , 1994 , 68, 103-108	7.5	3
144	Main-sequence broadening in the double clusterh and [persei. <i>Astrophysics and Space Science</i> , 1990 , 169, 109-111	1.6	3
143	Plasmoids and Resulting Blobs due to the Interaction of Magnetoacoustic Waves with a 2.5D Magnetic Null Point. <i>Astrophysical Journal</i> , 2020 , 902, 11	4.7	3
142	Overcompressive Shocks and Compound Shocks in 2D and 3D Magnetohydrodynamic Flows 2001 , 791-8	300	3

(2006-2009)

141	Characteristics of magnetised plasma flow around stationary and expanding magnetic clouds. <i>Astronomy and Astrophysics</i> , 2009 , 507, 611-616	5.1	3	
140	Analysis of the effect of neutral flow on the waves in the solar photosphere. <i>Astronomy and Astrophysics</i> , 2007 , 461, 277-284	5.1	3	
139	A new class of discontinuous solar wind solutions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 1023-1034	4.3	3	
138	Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA. <i>Astronomy and Astrophysics</i> , 2021 , 649, A69	5.1	3	
137	A Case for Electron-Astrophysics. Experimental Astronomy,1	1.3	3	
136	Forecasting space weather with EUHFORIA in the virtual space weather modeling centre. <i>Plasma Physics and Controlled Fusion</i> , 2019 , 61, 014011	2	3	
135	Generation and evolution of anisotropic turbulence and related energy transfer in drifting proton-alpha plasmas. <i>Astronomy and Astrophysics</i> , 2018 , 613, A10	5.1	3	
134	Quasi-oscillatory dynamics observed in ascending phase of the flare on March 6, 2012. <i>Astronomy and Astrophysics</i> , 2017 , 600, A67	5.1	2	
133	Comparative analysis of solar radio bursts before and during CME propagation. <i>Astronomy and Astrophysics</i> , 2019 , 625, A63	5.1	2	
132	Interferometric Observations of the Quiet Sun at 20 and 25 MHz in May 2014. <i>Solar Physics</i> , 2018 , 293, 1	2.6	2	
131	Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows. <i>Physics of Plasmas</i> , 2014 , 21, 082902	2.1	2	
130	Self-heating and its possible relationship to chromospheric heating in slowly rotating stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	2	
129	Nonresonant electromagnetic instabilities in space plasmas: interplay of Weibel and firehose instabilities 2010 ,		2	
128	A Quaternionic Approach to Treat the Ideally Stationary Magnetohydrodynamic Equations 2009,		2	
127	Numerical simulations of the solar corona and Coronal Mass Ejections. <i>Earth, Planets and Space</i> , 2009 , 61, 599-602	2.9	2	
126	Magnetic field disturbances in the sheath region of a super-sonic interplanetary magnetic cloud. <i>Annales Geophysicae</i> , 2008 , 26, 3153-3158	2	2	
125	Overreflection and Generation of Gravito-Alfven Waves in Solar-Type Stars. <i>Astrophysical Journal</i> , 2007 , 664, 1221-1227	4.7	2	
124	The effects of inelastic collisions on waves in partially ionized plasma. <i>Plasma Sources Science and Technology</i> , 2006 , 15, S1-S7	3.5	2	

123	Waves propagating along a density gradient in a dusty plasma. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 320, 423-427	2.3	2
122	The image charge effects on plasma waves in the presence of neutral dust grains. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 323, 439-444	2.3	2
121	Electron acoustic wave in a dusty plasma. Planetary and Space Science, 2002, 50, 807-810	2	2
120	Disintegration and reformation of intermediate shock segments in 3D MHD bow shock flows. <i>AIP Conference Proceedings</i> , 2000 ,	Ο	2
119	Velocity Shear Induced Phenomena in Solar Atmosphere. <i>Space Science Reviews</i> , 1999 , 87, 295-298	7.5	2
118	A parallel semi-implicit method for 3D nonlinear magnetohydrodynamics. <i>Lecture Notes in Computer Science</i> , 1995 , 170-175	0.9	2
117	Parallel magnetohydrodynamics on the CM-5. Lecture Notes in Computer Science, 1994, 365-370	0.9	2
116	Domain of Influence Analysis: Implications for Data Assimilation in Space Weather Forecasting. <i>Frontiers in Astronomy and Space Sciences</i> ,7,	3.8	2
115	Monotone residual distribution schemes for the ideal magnetohydrodynamic equations on unstructured grids. <i>AIAA Journal</i> , 2001 , 39, 1532-1541	2.1	2
114	Conservative Multidimensional Upwind Residual Distribution Schemes for Arbitrary Finite Elements 2003 , 88-93		2
113	Numerical simulations of shear-induced consecutive coronal mass ejections. <i>Astronomy and Astrophysics</i> , 2020 , 637, A77	5.1	2
112	Self-consistent evolution models for slow CMEs up to 1 AU 2016 ,		2
111	The Magnetosphere of the Earth under Sub-Alfvhic Solar Wind Conditions as Observed on 24 and 25 May 2002. <i>Geophysical Monograph Series</i> , 2017 , 1-13	1.1	1
110	Fire-hose instability of inhomogeneous plasma flows with heat fluxes. <i>Physics of Plasmas</i> , 2020 , 27, 112	29 <u>0.1</u>	1
109	A firehose-like aperiodic instability of the counter-beaming electron plasmas. <i>Plasma Physics and Controlled Fusion</i> , 2020 ,	2	1
108	Electromagnetic instabilities of low-beta alpha/proton beams in space plasmas. <i>Astrophysics and Space Science</i> , 2020 , 365, 1	1.6	1
107	Determination of the solar rotation parameters via orthogonal polynomials. <i>Advances in Space Research</i> , 2020 , 65, 1843-1851	2.4	1
106	Evolution of relative drifts and temperature anisotropies in expanding collisionless plasmasâl.5D vs. 2.5D hybrid simulations 2016 ,		1

105	Features of coronal heating by drift waves. Journal of Physics: Conference Series, 2014, 511, 012054	0.3	1
104	Kinetic dust acoustic mode in inhomogeneous partially magnetized plasma. <i>Journal of Physics:</i> Conference Series, 2014 , 511, 012011	0.3	1
103	On the Evolution of Pre-Flare Patterns of a 3-Dimensional Model of AR 11429. <i>Proceedings of the International Astronomical Union</i> , 2017 , 13, 294-297	0.1	1
102	Variations in EUV Irradiance: Comparison between LYRA, ESP, and SWAP Integrated Flux. <i>Advances in Astronomy</i> , 2014 , 2014, 1-13	0.9	1
101	The role of lateral magnetic reconnection in solar eruptive events. <i>Annales Geophysicae</i> , 2009 , 27, 3941	-3948	1
100	Waves and instabilities of inhomogeneous plasmas 2004 , 300-383		1
99	Streaming ion instability in nonuniform magnetized plasmas and nonlinear structures. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 328, 65-72	2.3	1
98	Dynamics of Coronal Loop Oscillations Recent Improvements and Computational Aspects. <i>Space Science Reviews</i> , 2005 , 121, 79-89	7.5	1
97	Shear Induced Phenomena in Dusty Plasma Flows. <i>Astrophysics and Space Science</i> , 2001 , 277, 135-138	1.6	1
96	A dipolar vortex in a magnetized pair plasma containing nonuniform flows. <i>Physics of Plasmas</i> , 2002 , 9, 806-810	2.1	1
95	Data parallel simulations of the magnetohydrodynamics of plasma loops. <i>Lecture Notes in Computer Science</i> , 1998 , 233-241	0.9	1
94	Coronal Loop Reating by Resonant Absorption. <i>Geophysical Monograph Series</i> , 1990 , 257-262	1.1	1
93	Transparent Log-Based Data Storage in MPI-IO Applications. <i>Lecture Notes in Computer Science</i> , 2007 , 233-241	0.9	1
92	A Study of Real World I/O Performance in Parallel Scientific Computing 2007 , 871-881		1
91	Plasma Flow Generation due to the Nonlinear Alfvħ Wave Propagation around a 3D Magnetic Null Point. <i>Astrophysical Journal</i> , 2021 , 922, 123	4.7	1
90	On the Usability of High-Level Parallel IO in Unstructured Grid Simulations. <i>Lecture Notes in Computer Science</i> , 2006 , 400-401	0.9	1
89	On the Time Scales and the Efficiency of Solar Coronal Loop Heating by Resonant Absorption 1991 , 486	5-488	1
88	The impact of coronal hole characteristics and solar cycle activity in reconstructing coronal holes with EUHFORIA. <i>Journal of Physics: Conference Series</i> , 2020 , 1548, 012004	0.3	1

87	Thermal conduction effects on formation of chromospheric solar tadpole-like jets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 3329-3334	4.3	1
86	Spreading protons in the heliosphere: a note on cross-field diffusion effects. <i>Journal of Physics:</i> Conference Series, 2019 , 1332, 012018	0.3	1
85	r-adaptive Mesh Algorithms with High-order Flux Reconstruction Scheme for High-speed Flows 2021 ,		1
84	On the Observational Properties of the Decameter Striae 2018,		1
83	Generation of interplanetary type II radio emission. Astronomy and Astrophysics,	5.1	1
82	Spatial variation in the periods of ion and neutral waves in a solar magnetic arcade. <i>Astronomy and Astrophysics</i> , 2021 , 652, A88	5.1	1
81	Transport coefficients enhanced by suprathermal particles in nonequilibrium heliospheric plasmas. <i>Astronomy and Astrophysics</i> ,	5.1	1
80	The COOLFluiD Parallel Architecture. Lecture Notes in Computer Science, 2005, 520-527	0.9	1
79	How the area of solar coronal holes affects the properties of high-speed solar wind streams near Earth: An analytical model. <i>Astronomy and Astrophysics</i> , 2022 , 659, A190	5.1	1
78	Comment on "Alfvħ instability in a compressible flow". <i>Physical Review Letters</i> , 2009 , 103, 019501; author reply 019502	7.4	Ο
77	Propagation of the Alfvħ Wave and Induced Perturbations in the Vicinity of a 3D Proper Magnetic Null Point. <i>Astrophysical Journal</i> , 2022 , 924, 126	4.7	0
76	Advanced Interpretation of Waves and Instabilities in Space Plasmas. <i>Astrophysics and Space Science Library</i> , 2021 , 185-218	0.3	Ο
75	Over-expansion of a coronal mass ejection generates sub-Alfvhic plasma conditions in the solar wind at Earth. <i>Astronomy and Astrophysics</i> , 2021 , 647, A149	5.1	0
74	3D numerical simulations of propagating two-fluid, torsional Alfvħ waves and heating of a partially ionized solar chromosphere. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 989-	9 9 ê	O
73	Case study on the identification and classification of small-scale flow patterns in flaring active region. <i>Astronomy and Astrophysics</i> , 2021 , 645, A52	5.1	0
72	Quo vadis, European Space Weather community?. <i>Journal of Space Weather and Space Climate</i> , 2021 , 11, 26	2.5	0
71	Analysis of Deformation and Erosion during CME Evolution. <i>Geosciences (Switzerland)</i> , 2021 , 11, 314	2.7	0
70	Chromospheric heating and generation of plasma outflows by impulsively generated two-fluid magnetoacoustic waves. <i>Astronomy and Astrophysics</i> , 2021 , 652, A124	5.1	O

(2019-2022)

69	Comparing the Heliospheric Cataloging, Analysis, and Techniques Service (HELCATS) Manual and Automatic Catalogues of Coronal Mass Ejections Using Solar Terrestrial Relations Observatory/Heliospheric Imager (STEREO/HI) Data. <i>Solar Physics</i> , 2022 , 297, 1	2.6	0
68	Toward a Realistic Evaluation of Transport Coefficients in Non-equilibrium Space Plasmas. <i>Astrophysical Journal</i> , 2022 , 927, 159	4.7	Ο
67	Dynamic Time Warping as a Means of Assessing Solar Wind Time Series. <i>Astrophysical Journal</i> , 2022 , 927, 187	4.7	O
66	r-adaptive algorithms for supersonic flows with high-order Flux Reconstruction methods. <i>Computer Physics Communications</i> , 2022 , 276, 108373	4.2	О
65	Mixing the Solar Wind Proton and Electron Scales. Theory and 2D-PIC Simulations of Firehose Instability. <i>Astrophysical Journal</i> , 2022 , 930, 158	4.7	О
64	Elements of plasma physics 2019 , 27-65		
63	âDerivationâ⊡f the macroscopic equations 2019 , 66-102		
62	The MHD model 2019 , 105-146		
61	Waves and characteristics 2019 , 147-180		
60	Spectral theory 2019 , 181-230		
59	Waves and instabilities of inhomogeneous plasmas 2019 , 233-291		
58	Magnetic structures and dynamics of the solar system 2019 , 292-324		
57	Cylindrical plasmas 2019 , 325-371		
56	Initial value problem and wave damping 2019 , 372-398		
55	Resonant absorption and wave heating 2019 , 399-434		
54	Waves and instabilities of stationary plasmas 2019 , 437-472		
53	Shear flow and rotation 2019 , 473-524		
52	Resistive plasma dynamics 2019 , 525-568		

51	Computational linear MHD 2019 , 569-614	
50	Static equilibrium of toroidal plasmas 2019 , 617-666	
49	Linear dynamics of static toroidal plasmas 2019 , 667-706	
48	Linear dynamics of toroidal plasmas with flow 2019 , 707-746	
47	Turbulence in incompressible magnetoâfluids 2019 , 749-779	
46	Computational nonlinear MHD 2019 , 780-836	
45	Transonic MHD flows and shocks 2019 , 837-878	
44	Ideal MHD in special relativity 2019 , 879-918	
43	Vectors and coordinates 2019 , 919-930	
42	Tables of physical quantities 2019 , 931-936	
41	Electrostatic ion perturbations in kinematically complex shear flows. <i>New Journal of Physics</i> , 2015 , 17, 043019	2.9
40		
'	Coronal Heating & Solar Wind Acceleration by Drift Waves. <i>Journal of Physics: Conference Series</i> , 2015 , 642, 012021	0.3
39		0.3
	2015, 642, 012021 Shearing motions and torus instability in the 2010 April 3 filament eruption. <i>Proceedings of the</i>	
39	2015, 642, 012021 Shearing motions and torus instability in the 2010 April 3 filament eruption. <i>Proceedings of the International Astronomical Union</i> , 2013, 8, 475-476 Magnetohydrodynamic study on the effect of the gravity stratification on flux rope ejections.	0.1
39	Shearing motions and torus instability in the 2010 April 3 filament eruption. <i>Proceedings of the International Astronomical Union</i> , 2013 , 8, 475-476 Magnetohydrodynamic study on the effect of the gravity stratification on flux rope ejections. <i>Proceedings of the International Astronomical Union</i> , 2013 , 8, 197-200 The role of streamers in the deflection of coronal mass ejections. <i>Proceedings of the International</i>	0.1
39 38 37	Shearing motions and torus instability in the 2010 April 3 filament eruption. <i>Proceedings of the International Astronomical Union</i> , 2013 , 8, 475-476 Magnetohydrodynamic study on the effect of the gravity stratification on flux rope ejections. <i>Proceedings of the International Astronomical Union</i> , 2013 , 8, 197-200 The role of streamers in the deflection of coronal mass ejections. <i>Proceedings of the International Astronomical Union</i> , 2011 , 7, 134-138	0.1 0.1 0.1

(2002-2006)

33	EVector: An Efficient Vector Implementation âlsing Virtual Memory for Improving Memory. <i>Scientific Programming</i> , 2006 , 14, 45-59	1.4
32	Simulations of the Onset and the Evolution of Coronal Mass Ejections. <i>Fusion Science and Technology</i> , 2006 , 49, 477-488	1.1
31	Comment on â\textsuperscript{\textsupers	2.7
30	The MHD model 2004 , 131-185	
29	Spectral theory 2004 , 230-299	
28	âDerivationâlof the macroscopic equations 2004 , 83-128	
27	Magnetic structures and dynamics 2004 , 384-430	
26	Cylindrical plasmas 2004 , 431-495	
25	Initial value problem and wave damping 2004 , 496-532	
24	Resonant absorption and wave heating 2004 , 533-576	
23	Vectors and coordinates 2004 , 577-584	
22	Tables of physical quantities 2004 , 585-593	
21	Elements of plasma physics 2004 , 34-82	
20	Waves and characteristics 2004 , 186-229	
19	Response to âllomment on âlbnâlicoustic waves in dusty plasma with charge fluctuationsâlâl[Phys. Plasmas 11, 849 (2004)]. <i>Physics of Plasmas</i> , 2004 , 11, 852-852	2.1
18	Comment on: âIIheory of vortex flows in partially ionized magnetoplasmasâI[Phys. Lett. A 326 (2004) 267]. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 329, 162-164	2.3
17	Foreword: Computing in Space and Astrophysical Plasmas. <i>Space Science Reviews</i> , 2005 , 121, 1-2	7.5
16	Comment on âEffect of flow profile on low frequency drift-type waves in a dusty plasmaâ[[Phys. Plasmas 8, 3150 (2001)]. <i>Physics of Plasmas</i> , 2002 , 9, 1481-1482	2.1

Helicity loading and dissipation: The helicity budget of ar 7978 from the cradle to the grave. 15 COSPAR Colloquia Series, 2002, 143-146 Development of Genuinely Multidimensional Upwind Residual Distribution Schemes for the System 14 of Eight Wave Ideal Magnetohydro-Dynamic Equations on Unstructured Grids 2001, 189-196 Intermediate Shocks in 3D MHD Bow Shock Flows 2001, 247-252 13 Magnetohydrodynamics Stability Analysis of the KT-2 Tokamak Plasma. Fusion Science and 12 Technology, 1999, 35, 18-31 Proton-Alpha Drift Instability of Electromagnetic Ion-Cyclotron Modes: Quasilinear Development 11 2.1 2021. 3. 1175-1189 Advanced Numerical Tools for Studying Waves and Instabilities in Kappa Distributed Plasmas. 10 0.3 Astrophysics and Space Science Library, 2021, 163-184 Computer Simulations of Solar Plasmas 2003, 63-80 Simulating CME Initiation and Evolution: State-of-the-art. Astrophysics and Space Science Library, 0.3 **2007**, 39-48 Linear Visco-Resistive Computations of Magnetohydrodynamic Waves: I. The Code and Test Cases. International Astronomical Union Colloquium, 1994, 144, 503-505 6 3D Nonlinear Wave Heating of Coronal Loops 1994, 103-108 Calculations of Soft X-ray Images from MHD Simulations of Heating of Coronal Loops 1996, 423-424 5 2D and 3D Nonlinear MHD Simulations of Coronal Loop Heating by Alfvh Waves 1996, 425-426 3D Nonlinear MHD Wave Heating of Coronal Loops. Astrophysics and Space Science Library, 1999, 319-322.3 3 Eigenspectra of solar active region long-period oscillations. Astronomy and Astrophysics, 2021, 653, A39 $_{5.1}$

Self-similarity for astrophysical MHD transients revisited. Advances in Space Research, 2021, 69, 474-474 2.4

1