Marilyn J Roossinck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3230050/publications.pdf

Version: 2024-02-01

76 papers 7,940 citations

38 h-index

87888

95266 68 g-index

77 all docs

77
docs citations

times ranked

77

5809 citing authors

#	Article	IF	CITATIONS
1	A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science, 2007, 315, 513-515.	12.6	770
2	Cucumber MOSAIC Virus. Advances in Virus Research, 1992, 41, 281-348.	2.1	698
3	Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 2017, 15, 161-168.	28.6	590
4	The good viruses: viral mutualistic symbioses. Nature Reviews Microbiology, 2011, 9, 99-108.	28.6	480
5	MECHANISMS OF PLANTVIRUS EVOLUTION. Annual Review of Phytopathology, 1997, 35, 191-209.	7.8	350
6	Virus infection improves drought tolerance. New Phytologist, 2008, 180, 911-921.	7.3	348
7	Plant Virus Metagenomics: Advances in Virus Discovery. Phytopathology, 2015, 105, 716-727.	2.2	340
8	Genetic Diversity in RNA Virus Quasispecies Is Controlled by Host-Virus Interactions. Journal of Virology, 2001, 75, 6566-6571.	3.4	250
9	Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology, 2010, 19, 81-88.	3.9	220
10	PLANT VIRUS SATELLITE AND DEFECTIVE INTERFERING RNAS: New Paradigms for a New Century. Annual Review of Phytopathology, 2004, 42, 415-437.	7.8	209
11	Rearrangements in the 5′ Nontranslated Region and Phylogenetic Analyses of Cucumber Mosaic Virus RNA 3 Indicate Radial Evolution of Three Subgroups. Journal of Virology, 1999, 73, 6752-6758.	3.4	206
12	Lifestyles of plant viruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1899-1905.	4.0	205
13	ICTV Virus Taxonomy Profile: Partitiviridae. Journal of General Virology, 2018, 99, 17-18.	2.9	202
14	Genetic Bottlenecks Reduce Population Variation in an Experimental RNA Virus Population. Journal of Virology, 2004, 78, 10582-10587.	3.4	186
15	Plant Virus Metagenomics: Biodiversity and Ecology. Annual Review of Genetics, 2012, 46, 359-369.	7.6	183
16	Symbiosis versus competition in plant virus evolution. Nature Reviews Microbiology, 2005, 3, 917-924.	28.6	153
17	Plants, viruses and the environment: Ecology and mutualism. Virology, 2015, 479-480, 271-277.	2.4	144
18	Plant Virus Biodiversity and Ecology. PLoS Biology, 2006, 4, e80.	5.6	123

#	Article	IF	CITATIONS
19	Ecosystem simplification, biodiversity loss and plant virus emergence. Current Opinion in Virology, 2015, 10, 56-62.	5.4	119
20	Evolutionarily Related Sindbis-Like Plant Viruses Maintain Different Levels of Population Diversity in a Common Host. Journal of Virology, 2000, 74, 3130-3134.	3.4	111
21	Move Over, Bacteria! Viruses Make Their Mark as Mutualistic Microbial Symbionts. Journal of Virology, 2015, 89, 6532-6535.	3.4	108
22	The remarkable evolutionary history of endornaviruses. Journal of General Virology, 2011, 92, 2674-2678.	2.9	104
23	Plant RNA virus evolution. Current Opinion in Microbiology, 2003, 6, 406-409.	5.1	102
24	Cucumber mosaic virus, a model for RNA virus evolution. Molecular Plant Pathology, 2001, 2, 59-63.	4.2	98
25	Bell pepper endornavirus: molecular and biological properties, and occurrence in the genus Capsicum. Journal of General Virology, 2011, 92, 2664-2673.	2.9	92
26	Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Frontiers in Microbiology, 2014, 5, 767.	3.5	91
27	Plant virus metagenomics: what we know and why we need to know more. Frontiers in Plant Science, 2014, 5, 150.	3.6	83
28	Plant Virus Ecology. PLoS Pathogens, 2013, 9, e1003304.	4.7	81
29	Symbiosis: Viruses as Intimate Partners. Annual Review of Virology, 2017, 4, 123-139.	6.7	74
30	Evolutionary and ecological links between plant and fungal viruses. New Phytologist, 2019, 221, 86-92.	7.3	74
31	Deep sequencing for discovery and evolutionary analysis of plant viruses. Virus Research, 2017, 239, 82-86.	2.2	70
32	Biosecurity Implications of New Technology and Discovery in Plant Virus Research. PLoS Pathogens, 2013, 9, e1003337.	4.7	66
33	Rapid Induction and Severity of Symptoms in Zucchini Squash (<i>Cucurbita pepo</i>) Map to RNA 1 of Cucumber Mosaic Virus. Molecular Plant-Microbe Interactions, 1990, 3, 188.	2.6	66
34	Teasing apart a three-way symbiosis: Transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochemical and Biophysical Research Communications, 2010, 401, 225-230.	2.1	59
35	Environment Determines Fidelity for an RNA Virus Replicase. Journal of Virology, 2007, 81, 9072-9077.	3.4	55

#	Article	IF	Citations
37	A new look at plant viruses and their potential beneficial roles in crops. Molecular Plant Pathology, 2015, 16, 331-333.	4.2	45
38	Multiplexed Interactions. Advances in Virus Research, 2013, 86, 37-58.	2.1	41
39	Manipulation of Aphid Behavior by a Persistent Plant Virus. Journal of Virology, 2019, 93, .	3.4	41
40	Differential Responses to Virus Challenge of Laboratory and Wild Accessions of Australian Species of Nicotiana, and Comparative Analysis of RDR1 Gene Sequences. PLoS ONE, 2015, 10, e0121787.	2.5	38
41	Using a Novel Partitivirus in Pseudogymnoascus destructans to Understand the Epidemiology of White-Nose Syndrome. PLoS Pathogens, 2016, 12, e1006076.	4.7	38
42	Genetic bottlenecks during systemic movement of Cucumber mosaic virus vary in different host plants. Virology, 2010, 404, 279-283.	2.4	35
43	Molecular Characterization, Ecology, and Epidemiology of a Novel Tymovirus in <i>Asclepias viridis</i> from Oklahoma. Phytopathology, 2012, 102, 166-176.	2.2	35
44	Are communities of microbial symbionts more diverse than communities of macrobial hosts?. Fungal Biology, 2012, 116, 465-477.	2.5	35
45	Coevolution of a Persistent Plant Virus and Its Pepper Hosts. Molecular Plant-Microbe Interactions, 2018, 31, 766-776.	2.6	35
46	Co-divergence and host-switching in the evolution of tobamoviruses. Journal of General Virology, 2012, 93, 408-418.	2.9	31
47	Determinants of Coinfection in the Mycoviruses. Frontiers in Cellular and Infection Microbiology, 2019, 9, 169.	3.9	29
48	Determinants of taxonomic composition of plant viruses at the Nature Conservancy's Tallgrass Prairie Preserve, Oklahoma. Virus Evolution, 2015, 1, vev007.	4.9	28
49	Persistent Plant Viruses: Molecular Hitchhikers or Epigenetic Elements?., 2012,, 177-186.		27
50	Detection of members of the Secoviridae in the Tallgrass Prairie Preserve, Osage County, Oklahoma, USA. Virus Research, 2012, 167, 34-42.	2.2	26
51	A life history view of mutualistic viral symbioses: quantity or quality for cooperation?. Current Opinion in Microbiology, 2013, 16, 514-518.	5.1	26
52	A 1,000-Year-Old RNA Virus. Journal of Virology, 2019, 93, .	3.4	26
53	How does the genome structure and lifestyle of a virus affect its population variation?. Current Opinion in Virology, 2014, 9, 39-44.	5.4	25
54	Viruses in the phytobiome. Current Opinion in Virology, 2019, 37, 72-76.	5.4	24

#	Article	IF	CITATIONS
55	Changes in Population Dynamics in Mutualistic versus Pathogenic Viruses. Viruses, 2011, 3, 12-19.	3.3	21
56	CUCUMOVIRUSES (BROMOVIRIDAE) General Features., 1999,, 315-320.		18
57	Do persistent RNA viruses fit the trade-off hypothesis of virulence evolution?. Current Opinion in Virology, 2012, 2, 556-560.	5.4	17
58	Fixation of Emerging Interviral Recombinants in Cucumber Mosaic Virus Populations. Journal of Virology, 2013, 87, 1264-1269.	3.4	15
59	Mapping Viral Functional Domains for Genetic Diversity in Plants. Journal of Virology, 2013, 87, 790-797.	3.4	15
60	Cucumovirus Isolation and RNA Extraction. , 1998, 81, 189-196.		14
61	Analysis of quasispecies variation in single and mixed viral infection. Virus Evolution, 2017, 3, vex037.	4.9	12
62	Large-Scale Synonymous Substitutions in Cucumber Mosaic Virus RNA 3 Facilitate Amino Acid Mutations in the Coat Protein. Journal of Virology, 2018, 92, .	3.4	11
63	Mutation and Recombination Frequencies Reveal a Biological Contrast within Strains of Cucumber Mosaic Virus. Journal of Virology, 2015, 89, 6817-6823.	3.4	10
64	Impact of Cultivated Hosts on the Recombination of Cucumber Mosaic Virus. Journal of Virology, 2019, 93, .	3.4	10
65	Phylogeographic analysis of Pseudogymnoascus destructans partitivirus-pa explains the spread dynamics of white-nose syndrome in North America. PLoS Pathogens, 2021, 17, e1009236.	4.7	9
66	A simple technique for separation of Cowpea chlorotic mottle virus from Cucumber mosaic virus in natural mixed infections. Journal of Virological Methods, 2008, 153, 163-167.	2.1	7
67	Plant Virus Diversity and Evolution. , 2016, , 197-215.		7
68	Molecular Characterization of a Novel Putative Partitivirus Infecting Cytospora sacchari, a Plant Pathogenic Fungus. Plant Pathology Journal, 2014, 30, 151-158.	1.7	7
69	Characterizing Mycoviruses. Methods in Molecular Biology, 2018, 1848, 13-24.	0.9	6
70	RdRp or RT, That is the Question. Molecular Biology and Evolution, 2021, 38, 5082-5091.	8.9	5
71	Evaluation of Virus-Free and Wild-Type Isolates of <i>Pseudogymnoascus destructans</i> Using a Porcine Ear Model. MSphere, 2022, 7, e0102221.	2.9	4
72	Evolution of Persistent Viruses in Plants., 2016,, 263-272.		2

#	Article	IF	CITATIONS
73	Editorial overview: Environmental virology: how domestic viruses impact wild host species. Current Opinion in Virology, 2016, 19, v-vi.	5.4	1
74	Evolution of Mycoviruses., 2021,, 457-460.		1
75	Preface. Advances in Virus Research, 2020, 107, xi-xii.	2.1	O
76	The Ups and Downs of an Out-of-the-Box Scientist with a Curious Mind. Annual Review of Virology, 2022, 9, .	6.7	0