
## David S Leake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3229840/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Vitamins E and C do not effectively inhibit low density lipoprotein oxidation by ferritin at lysosomal pH. Free Radical Research, 2021, 55, 525-534.                                                                                                           | 3.3 | 3         |
| 2  | Cysteamine Decreases Lowâ€Density Lipoprotein Oxidation, Causes Regression of Atherosclerosis, and<br>Improves Liver and Muscle Function in Lowâ€Density Lipoprotein Receptor–Deficient Mice. Journal of<br>the American Heart Association, 2021, 10, e017524. | 3.7 | 11        |
| 3  | Effect of vitamin E on low density lipoprotein oxidation at lysosomal pH. Free Radical Research, 2020,<br>54, 574-584.                                                                                                                                         | 3.3 | 4         |
| 4  | Cysteamine inhibits lysosomal oxidation of low density lipoprotein in human macrophages and reduces atherosclerosis in mice. Atherosclerosis, 2019, 291, 9-18.                                                                                                 | 0.8 | 21        |
| 5  | Lysosomal oxidation of LDL alters lysosomal pH, induces senescence, and increases secretion of pro-inflammatory cytokines in human macrophages. Journal of Lipid Research, 2019, 60, 98-110.                                                                   | 4.2 | 32        |
| 6  | Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed. Chemistry and Physics of Lipids, 2018, 213, 13-24.                                        | 3.2 | 17        |
| 7  | Low density lipoprotein oxidation by ferritin at lysosomal pH. Chemistry and Physics of Lipids, 2018, 217, 51-57.                                                                                                                                              | 3.2 | 8         |
| 8  | The synthetic glycolipid-based TLR4 antagonist FP7 negatively regulates <i>in vitro</i> and <i>in vivo</i> haematopoietic and non-haematopoietic vascular TLR4 signalling. Innate Immunity, 2018, 24, 411-421.                                                 | 2.4 | 11        |
| 9  | Effect of low extracellular pH on NF-κB activation in macrophages. Atherosclerosis, 2014, 233, 537-544.                                                                                                                                                        | 0.8 | 32        |
| 10 | Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine<br>kinase and Rho kinase–signaling pathways. Blood, 2013, 122, 580-589.                                                                                   | 1.4 | 59        |
| 11 | Oxidation of Low-Density Lipoprotein by Iron at Lysosomal pH: Implications for Atherosclerosis.<br>Biochemistry, 2012, 51, 3767-3775.                                                                                                                          | 2.5 | 30        |
| 12 | Macrophage antioxidant protection within atherosclerotic plaques. Frontiers in Bioscience -<br>Landmark, 2009, Volume, 1230.                                                                                                                                   | 3.0 | 30        |
| 13 | Antioxidant activity and protective effects of green and dark coffee components against human low density lipoprotein oxidation. European Food Research and Technology, 2008, 227, 1017-1024.                                                                  | 3.3 | 35        |
| 14 | A novel method for production of lipid hydroperoxide- or oxysterol-rich low-density lipoprotein.<br>Atherosclerosis, 2008, 197, 579-587.                                                                                                                       | 0.8 | 30        |
| 15 | A moderate reduction in extracellular pH protects macrophages against apoptosis induced by oxidized<br>low density lipoprotein. Journal of Lipid Research, 2008, 49, 782-789.                                                                                  | 4.2 | 7         |
| 16 | Low Density Lipoprotein Undergoes Oxidation Within Lysosomes in Cells. Circulation Research, 2007, 100, 1337-1343.                                                                                                                                             | 4.5 | 80        |
| 17 | Mechanism of the antioxidant to pro-oxidant switch in the behavior of dehydroascorbate during LDL oxidation by copper(II) ions. Archives of Biochemistry and Biophysics, 2007, 465, 303-314.                                                                   | 3.0 | 16        |
| 18 | Common variants of apolipoprotein A-IV differ in their ability to inhibit low density lipoprotein oxidation. Atherosclerosis, 2007, 192, 266-274.                                                                                                              | 0.8 | 47        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In Vitro Antioxidant Activity of Coffee Compounds and Their Metabolites. Journal of Agricultural and<br>Food Chemistry, 2007, 55, 6962-6969.                                                                                                   | 5.2 | 192       |
| 20 | Aqueous peroxyl radical exposure to THP-1 cells causes glutathione loss followed by protein<br>oxidation and cell death without increased caspase-3 activity. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 2007, 1773, 945-953. | 4.1 | 14        |
| 21 | Ascorbate does not protect macrophages against apoptosis induced by oxidised low density<br>lipoprotein. Archives of Biochemistry and Biophysics, 2006, 455, 68-76.                                                                            | 3.0 | 20        |
| 22 | Effects of dairy products naturally enriched with cis-9,trans-11 conjugated linoleic acid on the blood<br>lipid profile in healthy middle-aged men. American Journal of Clinical Nutrition, 2006, 83, 744-753.                                 | 4.7 | 148       |
| 23 | Saturated fat-induced changes in Sf 60–400 particle composition reduces uptake of LDL by HepG2 cells.<br>Journal of Lipid Research, 2006, 47, 393-403.                                                                                         | 4.2 | 36        |
| 24 | Induction of heme oxygenase 1 by moderately oxidized low-density lipoproteins in human vascular<br>smooth muscle cells: Role of mitogen-activated protein kinases and Nrf2. Free Radical Biology and<br>Medicine, 2005, 39, 227-236.           | 2.9 | 127       |
| 25 | Role of Nrf2 in the Regulation of CD36 and Stress Protein Expression in Murine Macrophages.<br>Circulation Research, 2004, 94, 609-616.                                                                                                        | 4.5 | 388       |
| 26 | Degree of oxidation of low density lipoprotein affects expression of CD36 and PPARγ, but not cytokine production, by human monocyte-macrophages. Atherosclerosis, 2003, 168, 271-282.                                                          | 0.8 | 25        |
| 27 | Mechanisms by which cysteine can inhibit or promote the oxidation of low density lipoprotein by copper. Atherosclerosis, 2003, 169, 87-94.                                                                                                     | 0.8 | 29        |
| 28 | Oxidation affects the flow-induced aggregation of low density lipoprotein and its inhibition by albumin. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1634, 24-29.                                              | 2.4 | 4         |
| 29 | Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL: important role of<br>uric acid. Journal of Lipid Research, 2003, 44, 512-521.                                                                                  | 4.2 | 124       |
| 30 | Effects of oxidised low density lipoprotein on dendritic cells: a possible immunoregulatory component of the atherogenic micro-environment?. Cardiovascular Research, 2002, 55, 806-819.                                                       | 3.8 | 96        |
| 31 | Inhibition of lipoprotein-associated phospholipase A2diminishes the death-inducing effects of oxidised LDL on human monocyte-macrophages. FEBS Letters, 2001, 505, 357-363.                                                                    | 2.8 | 103       |
| 32 | Flavonoids and the oxidation of low-density lipoprotein. Nutrition, 2001, 17, 63-66.                                                                                                                                                           | 2.4 | 12        |
| 33 | Measurement of Copper-Binding Sites on Low Density Lipoprotein. Arteriosclerosis, Thrombosis, and<br>Vascular Biology, 2001, 21, 594-602.                                                                                                      | 2.4 | 39        |
| 34 | Vitamin C Protects Human Vascular Smooth Muscle Cells Against Apoptosis Induced by Moderately<br>Oxidized LDL Containing High Levels of Lipid Hydroperoxides. Arteriosclerosis, Thrombosis, and<br>Vascular Biology, 1999, 19, 2387-2394.      | 2.4 | 105       |
| 35 | Quantitative immunohistochemical detection of oxidized low density lipoprotein in the rabbit arterial wall. Experimental and Molecular Pathology, 1999, 65, 121-140.                                                                           | 2.1 | 4         |
| 36 | Induction of antioxidant stress proteins in vascular endothelial and smooth muscle cells: Protective action of vitamin C against atherogenic lipoproteins. Free Radical Research, 1999, 31, 309-318.                                           | 3.3 | 25        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two<br>bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor.<br>Biochemical Journal, 1999, 338, 479.     | 3.7 | 101       |
| 38 | Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two<br>bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor.<br>Biochemical Journal, 1999, 338, 479-487. | 3.7 | 307       |
| 39 | Human serum, cysteine and histidine inhibit the oxidation of low density lipoprotein less at acidic pH.<br>FEBS Letters, 1998, 434, 317-321.                                                                                                    | 2.8 | 48        |
| 40 | Vitamin C Protects Human Arterial Smooth Muscle Cells Against Atherogenic Lipoproteins.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1662-1670.                                                                             | 2.4 | 53        |
| 41 | Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions?.<br>Atherosclerosis, 1997, 129, 149-157.                                                                                                          | 0.8 | 100       |
| 42 | The effects of pH on the oxidation of low-density lipoprotein by copper and metmyoglobin are different. FEBS Letters, 1997, 406, 37-41.                                                                                                         | 2.8 | 23        |
| 43 | Non-oxidative modification of low density lipoprotein by ruptured myocytes. FEBS Letters, 1997, 414, 576-580.                                                                                                                                   | 2.8 | 4         |
| 44 | High-resolution mapping of the frequency of lipid deposits in thoracic aortae from cholesterol-fed and heritable hyperlipidaemic rabbits. Atherosclerosis, 1996, 120, 249-253.                                                                  | 0.8 | 15        |
| 45 | Non-oxidative modification of native low-density lipoprotein by oxidized low-density lipoprotein.<br>Biochemical Journal, 1996, 316, 377-380.                                                                                                   | 3.7 | 8         |
| 46 | The effects of ascorbate and dehydroascorbate on the oxidation of low-density lipoprotein.<br>Biochemical Journal, 1996, 320, 373-381.                                                                                                          | 3.7 | 33        |
| 47 | Practical Approaches to Low Density Lipoprotein Oxidation: Whys, Wherefores and Pitfalls. Free<br>Radical Research, 1996, 25, 285-311.                                                                                                          | 3.3 | 92        |
| 48 | Induction of the antioxidant stress proteins heme oxygenase-1 and MSP23 by stress agents and oxidised LDL in cultured vascular smooth muscle cells. FEBS Letters, 1995, 368, 239-242.                                                           | 2.8 | 75        |
| 49 | Transition metal ions within human atherosclerotic lesions can catalyse the oxidation of low density lipoprotein by macrophages. FEBS Letters, 1995, 374, 12-16.                                                                                | 2.8 | 73        |
| 50 | Oxidisability of low density lipoproteins in patients with carotid or femoral artery atherosclerosis.<br>Atherosclerosis, 1995, 112, 77-84.                                                                                                     | 0.8 | 54        |
| 51 | NADPH Oxidase Is Not Essential for Low-Density Lipoprotein Oxidation by Human Monocyte-Derived<br>Macrophages. Biochemical and Biophysical Research Communications, 1994, 202, 1300-1307.                                                       | 2.1 | 10        |
| 52 | The effects of free radical scavengers on the oxidation of low-density lipoproteins by macrophages.<br>Lipids and Lipid Metabolism, 1994, 1215, 250-258.                                                                                        | 2.6 | 9         |
| 53 | The effect of inhibitors of free radical generating-enzymes on low-density lipoprotein oxidation by macrophages. Lipids and Lipid Metabolism, 1994, 1211, 69-78.                                                                                | 2.6 | 48        |
| 54 | Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein. FEBS<br>Letters, 1994, 352, 15-18.                                                                                                           | 2.8 | 56        |

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Acidic pH enables caeruloplasmin to catalyse the modification of low-density lipoprotein. FEBS<br>Letters, 1994, 338, 122-126.                                     | 2.8 | 87        |
| 56 | The oxidation of low density lipoprotein by cells or iron is inhibited by zinc. FEBS Letters, 1994, 341, 259-262.                                                  | 2.8 | 45        |
| 57 | Ascorbic acid can either increase or decrease low density lipoprotein modification. FEBS Letters, 1994,<br>341, 263-267.                                           | 2.8 | 40        |
| 58 | Acidic pH increases the oxidation of LDL by macrophages. FEBS Letters, 1993, 333, 275-279.                                                                         | 2.8 | 26        |
| 59 | The modification of low density lipoprotein by the flavonoids myricetin and gossypetin. Biochemical Pharmacology, 1993, 45, 67-75.                                 | 4.4 | 55        |
| 60 | Oxidation of low density lipoprotein by bovine and porcine aortic endothelial cells and porcine endocardial cells in culture. Atherosclerosis, 1993, 102, 209-216. | 0.8 | 22        |
| 61 | CD4-positive T-lymphocytes can oxidatively modify low density lipoprotein. Biochemical Society Transactions, 1993, 21, 132S-132S.                                  | 3.4 | 1         |
| 62 | The effect of EDTA on the oxidation of low density lipoprotein. Atherosclerosis, 1992, 94, 35-42.                                                                  | 0.8 | 44        |
| 63 | The oxidative modification of low density lipoprotein by human lymphocytes. Atherosclerosis, 1992, 92, 187-192.                                                    | 0.8 | 63        |
| 64 | The interaction between ruptured erythrocytes and low‐density lipoproteins. FEBS Letters, 1992, 303, 154-158.                                                      | 2.8 | 64        |
| 65 | Free radicals and low-density lipoprotein oxidation by macrophages. Biochemical Society Transactions, 1990, 18, 1170-1171.                                         | 3.4 | 17        |
| 66 | Modification of low-density lipoproteins by flavonoids. Biochemical Society Transactions, 1990, 18, 1172-1173.                                                     | 3.4 | 11        |
| 67 | Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages.<br>Biochemical Pharmacology, 1990, 39, 1743-1750.                        | 4.4 | 566       |
| 68 | Macrophage proteases can modify low density lipoproteins to increase their uptake by macrophages.<br>FEBS Letters, 1990, 269, 209-212.                             | 2.8 | 13        |
| 69 | The effects of acetylated low-density lipoproteins on fluid-phase pinocytosis by macrophages. FEBS<br>Journal, 1989, 182, 407-412.                                 | 0.2 | 2         |
| 70 | Macrophages possess both neutral and acidic protease activities toward low density lipoproteins.<br>Atherosclerosis, 1989, 79, 71-78.                              | 0.8 | 21        |
| 71 | The effect of macrophage stimulation on the uptake of acetylated low-density lipoproteins. Lipids and<br>Lipid Metabolism, 1989, 1005, 196-200.                    | 2.6 | 21        |
| 72 | Lysosomal engorgement inhibits fluid-phase pinocytosis in macrophages. Biochemical Society<br>Transactions, 1987, 15, 432-433.                                     | 3.4 | 1         |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The modification of low-density lipoproteins by macrophages in relation to atherosclerosis.<br>Biochemical Society Transactions, 1987, 15, 485-486.                                                      | 3.4 | 18        |
| 74 | Receptor-mediated endocytosis or pinocytosis?. Trends in Biochemical Sciences, 1986, 11, 509.                                                                                                            | 7.5 | 0         |
| 75 | Macrophages contain neutral protease activity toward low-density lipoproteins. Biochemical Society<br>Transactions, 1986, 14, 1084-1085.                                                                 | 3.4 | 1         |
| 76 | Subcellular fractionation of arterial smooth muscle cells laden with lipid following incubation<br>with low density lipoproteins and chloroquine. Experimental and Molecular Pathology, 1983, 38, 82-99. | 2.1 | 5         |
| 77 | Properties and subcellular localization of elastase-like activities of arterial smooth muscle cells in culture. Biochimica Et Biophysica Acta - General Subjects, 1983, 761, 41-47.                      | 2.4 | 42        |
| 78 | Properties and subcellular localization of adenosine diphosphatase in arterial smooth muscle cells<br>in culture. Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 762, 52-57.             | 4.1 | 27        |
| 79 | A large proportion of the acid phosphatase activity in arterial smooth-muscle cells is associated with the plasma membrane. Biochemical Society Transactions, 1982, 10, 35-36.                           | 3.4 | 4         |
| 80 | Lipid accumulation in arterial smooth muscle cells in culture Morphological and biochemical changes caused by low density lipoproteins and chloroquine. Atherosclerosis, 1982, 44, 275-291.              | 0.8 | 21        |
| 81 | Modification of the rate of pinocytosis in arterial smooth muscle cells in culture. Experimental and<br>Molecular Pathology, 1982, 36, 262-275.                                                          | 2.1 | 4         |
| 82 | Properties and Subcellular Localization of Acid Phosphatase Activity in Cultured Arterial Smooth<br>Muscle Cells. FEBS Journal, 1982, 128, 557-563.                                                      | 0.2 | 11        |
| 83 | Subcellular Localization of Adenosine Diphosphatase in Cultured Pig Arterial Endothelial Cells.<br>Thrombosis and Haemostasis, 1982, 47, 249-253.                                                        | 3.4 | 25        |
| 84 | Proteolytic degradation of low density lipoproteins by arterial smooth muscle cells. Lipids and Lipid<br>Metabolism, 1981, 664, 108-116.                                                                 | 2.6 | 26        |
| 85 | Quantitative studies of pinocytosis by arterial endothellal and smooth muscle cells in culture.<br>Experimental and Molecular Pathology, 1981, 35, 84-97.                                                | 2.1 | 19        |
| 86 | Quantitative Studies of Pinocytic Uptake of 125I-Labelled Polyvinylpyrrolidone by Pig Aortic<br>Smooth-Muscle Cells in Culture. Biochemical Society Transactions, 1977, 5, 130-133.                      | 3.4 | 7         |