Qing-Yuan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3229650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A copper-based metal-organic framework for upgrading natural gas through the recovery of C2H6 and C3H8. Green Chemical Engineering, 2023, 4, 81-87.	6.3	7
2	Nickelâ€Based Metal–Organic Frameworks for Coalâ€Bed Methane Purification with Record CH ₄ /N ₂ Selectivity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
3	Nickelâ€Based Metal–Organic Frameworks for Coalâ€Bed Methane Purification with Record CH ₄ /N ₂ Selectivity. Angewandte Chemie, 2022, 134, .	2.0	8
4	Control of pore environment in highly porous carbon materials for C2H6/C2H4 separation with exceptional ethane uptake. Materials Today Chemistry, 2022, 24, 100856.	3.5	2
5	Efficient purification of bioethanol by an ethanol-trapping coordination network. Separation and Purification Technology, 2022, 293, 121097.	7.9	14
6	Pore‧tructure Control in Metal–Organic Frameworks (MOFs) for Capture of the Greenhouse Gas SF ₆ with Record Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
7	Semiconductivity and high stability in centimetric two-dimensional bismuth–silver hybrid double perovskites. Materials Chemistry Frontiers, 2022, 6, 2135-2142.	5.9	3
8	Poreâ€Structure Control in Metal–Organic Frameworks (MOFs) for Capture of the Greenhouse Gas SF ₆ with Record Separation. Angewandte Chemie, 2022, 134, .	2.0	2
9	Separation of toluene from benzene derivatives and extraction of toluene from water based on a flexible naphthalene diimide coordination network. Separation and Purification Technology, 2021, 256, 117781.	7.9	3
10	A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation. Chemical Engineering Journal, 2021, 408, 127294.	12.7	72
11	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie, 2021, 133, 20546-20553.	2.0	14
12	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie - International Edition, 2021, 60, 20383-20390.	13.8	56
13	Unravelling the mechanism of amitriptyline removal from water by natural montmorillonite through batch adsorption, molecular simulation and adsorbent characterization studies. Journal of Colloid and Interface Science, 2021, 598, 379-387.	9.4	15
14	Heteroatom-doped porous carbon microspheres with ultramicropores for efficient CH4/N2 separation with ultra-high CH4 uptake. Separation and Purification Technology, 2021, 274, 119121.	7.9	18
15	Reversed C2H6/C2H4 separation in interpenetrated diamondoid coordination networks with enhanced host–guest interaction. Separation and Purification Technology, 2021, 276, 119385.	7.9	13
16	Reversible Switching between Nonporous and Porous Phases of a New SIFSIX Coordination Network Induced by a Flexible Linker Ligand. Journal of the American Chemical Society, 2020, 142, 6896-6901.	13.7	51
17	High-Efficiency Separation of Aromatic Sulfide from Liquid Hydrocarbon Fuel in Conjugated Porous Organic Framework with Polycarbazole Unit. ACS Applied Materials & Interfaces, 2019, 11, 40970-40979.	8.0	17
18	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie - International Edition, 2019, 58, 18212-18217.	13.8	55

2

#	Article	IF	CITATIONS
19	Selective Adsorption of Water, Methanol, and Ethanol by Naphthalene Diimide-Based Coordination Polymers with Constructed Open Cu ²⁺ Metal Sites and Separation of Ethanol/Acetonitrile. ACS Omega, 2019, 4, 1995-2000.	3.5	7
20	Highly Selective, Highâ€Capacity Separation of <i>o</i> â€Xylene from C ₈ Aromatics by a Switching Adsorbent Layered Material. Angewandte Chemie - International Edition, 2019, 58, 6630-6634.	13.8	69
21	Highly Selective, Highâ€Capacity Separation of o â€Xylene from C 8 Aromatics by a Switching Adsorbent Layered Material. Angewandte Chemie, 2019, 131, 6702-6706.	2.0	10
22	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie, 2019, 131, 18380-18385.	2.0	12
23	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	13.8	161
24	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	2.0	27
25	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie - International Edition, 2018, 57, 3332-3336.	13.8	52
26	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie, 2018, 130, 3390-3394.	2.0	12
27	Readily accessible shape-memory effect in a porous interpenetrated coordination network. Science Advances, 2018, 4, eaaq1636.	10.3	61
28	lmpact of partial interpenetration in a hybrid ultramicroporous material on C ₂ H ₂ /C ₂ H ₄ separation performance. Chemical Communications, 2018, 54, 3488-3491.	4.1	38
29	Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High Surface Area Porous Phase. Journal of the American Chemical Society, 2018, 140, 15572-15576.	13.7	51
30	Recyclable switching between nonporous and porous phases of a square lattice (sql) topology coordination network. Chemical Communications, 2018, 54, 7042-7045.	4.1	37
31	A dynamic and multi-responsive porous flexible metal–organic material. Nature Communications, 2018, 9, 3080.	12.8	89
32	Diverse cobalt(<scp>ii</scp>) coordination polymers for water/ethanol separation and luminescence for water sensing applications. CrystEngComm, 2018, 20, 3891-3897.	2.6	15
33	Construction of a Series of Porous (3,9)-c Coordination Networks Using Dicarboxylate and Tris-pyridyl Ligands and Their Gas Storage Properties. Crystal Growth and Design, 2017, 17, 3475-3481.	3.0	12
34	Supramolecular structural transformation of N,N′-bis(4-pyridylmethyl)-naphthalene diimide and fluorescence water sensing. New Journal of Chemistry, 2017, 41, 6160-6166.	2.8	11
35	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€5elective Sieving of CO ₂ . Angewandte Chemie, 2016, 128, 10424-10428.	2.0	43
36	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie - International Edition, 2016, 55, 10268-10272.	13.8	237

QING-YUAN YANG

#	Article	IF	CITATIONS
37	Network diversity through two-step crystal engineering of a decorated 6-connected primary molecular building block. CrystEngComm, 2016, 18, 8578-8581.	2.6	14
38	Double-walled pyr topology networks from a novel fluoride-bridged heptanuclear metal cluster. Chemical Science, 2015, 6, 4784-4789.	7.4	38
39	Linear Dependence of Photoluminescence in Mixed Ln-MOFs for Color Tunability and Barcode Application. Inorganic Chemistry, 2015, 54, 5707-5716.	4.0	140
40	Bright Whiteâ€Light Emission from a Single Organic Compound in the Solid State. Angewandte Chemie - International Edition, 2014, 53, 4572-4577.	13.8	176
41	Photoluminescent 3D lanthanide MOFs with a rare (10,3)-d net based on a new tripodal organic linker. CrystEngComm, 2014, 16, 6469-6475.	2.6	34
42	Pure white-light and yellow-to-blue emission tuning in single crystals of Dy(<scp>iii</scp>) metal–organic frameworks. Chemical Communications, 2014, 50, 7702-7704.	4.1	146
43	Adsorption Behavior of Metal–Organic Frameworks for Thiophenic Sulfur from Diesel Oil. Industrial & Engineering Chemistry Research, 2012, 51, 12449-12455.	3.7	73
44	Dual-Emission from a Single-Phase Eu–Ag Metal–Organic Framework: An Alternative Way to Get White-Light Phosphor. Chemistry of Materials, 2012, 24, 1954-1960.	6.7	236
45	Structural Conformation and Optical and Electrochemical Properties of Imidazolylâ€6ubstituted Naphthalenediimide and Its Hg ^{II} , Cd ^{II} , and Cu ^{II} Halide Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 1171-1179.	2.0	12
46	A simple topological identification method for highly (3,12)-connected 3D MOFs showing anion exchange and luminescent properties. Chemical Communications, 2011, 47, 4234.	4.1	131
47	Influence of the Organic Ligand Functionalization on the Breathing of the Porous Iron Terephthalate Metal Organic Framework Type Material upon Hydrocarbon Adsorption. Journal of Physical Chemistry C, 2011, 115, 18683-18695.	3.1	50
48	Two novel porous luminescent lanthanide-organic frameworks with new four-nodal (3,4)-connected network topology. Inorganic Chemistry Communication, 2011, 14, 826-830.	3.9	28
49	Anions, solvents and spacer ligands assisted hydrogen-bonding coordination frameworks from tripodal ntb ligands. Journal of Molecular Structure, 2010, 980, 193-200.	3.6	6
50	Synthesis, characterization, and DNAâ€binding of chiral complexes Δ―and ĥâ€{Ru(bpy) ₂ (pyip)] ²⁺ . Chirality, 2009, 21, 276-283.	2.6	20
51	Metal-Directed Assembly of Coordination Polymers with a Multifunctional Semirigid Ligand Containing Pyridyl and Benzimidazolyl Donor Groups. Crystal Growth and Design, 2009, 9, 2341-2353.	3.0	92
52	An unusual 3D coordination polymer assembled through parallel interpenetrating and polycatenating of (6,3) nets. CrystEngComm, 2009, 11, 680.	2.6	58
53	Assembly of Cdl2-type coordination networks from triangular ligand and octahedral metal center: topological analysis and potential framework porosity. Chemical Communications, 2008, , 356-358.	4.1	78
54	Promoting the Formation and Stabilization of G-Quadruplex by Dinuclear Rull Complex Ru2(obip)L4. Inorganic Chemistry, 2008, 47, 2910-2912.	4.0	79

#	Article	IF	CITATIONS
55	Formation of two (6,3) networks showing structural diversity, Borromean topology and conformational chirality in the same crystal. Chemical Communications, 2007, , 4242.	4.1	84
56	Discrete Chiral Single-Crystal Microtubes Assembled with Honeycomb Coordination Networks Showing Structural Diversity and Borromean Topology in One Single Crystal. Chemistry of Materials, 2007, 19, 4630-4632.	6.7	49