Sharon Ruthstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3229388/publications.pdf

Version: 2024-02-01

129 papers 2,532 citations

201385 27 h-index 253896 43 g-index

138 all docs

138 docs citations

138 times ranked 2828 citing authors

#	Article	IF	CITATIONS
1	Resolving Intermediate Solution Structures during the Formation of Mesoporous SBA-15. Journal of the American Chemical Society, 2006, 128, 3366-3374.	6.6	138
2	Study of the Formation of the Mesoporous Material SBA-15 by EPR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 1739-1748.	1.2	127
3	Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules. Journal of the American Chemical Society, 2021, 143, 17875-17890.	6.6	124
4	Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials. Langmuir, 2016, 32, 4935-4944.	1.6	97
5	Study of the Initial Formation Stages of the Mesoporous Material SBA-15 Using Spin-Labeled Block Co-polymer Templates. Journal of Physical Chemistry B, 2004, 108, 9016-9022.	1.2	95
6	Redox Chemistry of Nickel Complexes in Aqueous Solutions. Chemical Reviews, 2005, 105, 2609-2626.	23.0	93
7	Gd(<scp>iii</scp>)–Gd(<scp>iii</scp>) EPR distance measurements – the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics, 2015, 17, 18464-18476.	1.3	71
8	Paramagnetic Metal Ions in Pulsed ESR Distance Distribution Measurements. Accounts of Chemical Research, 2014, 47, 688-695.	7.6	59
9	Molecular Level Processes and Nanostructure Evolution During the Formation of the Cubic Mesoporous Material KIT-6. Chemistry of Materials, 2008, 20, 2779-2792.	3.2	56
10	EPR Spectroscopy Detects Various Active State Conformations of the Transcriptional Regulator CueR. Angewandte Chemie - International Edition, 2019, 58, 3053-3056.	7.2	48
11	Stable radicals formation in coals undergoing weathering: effect of coal rank. Physical Chemistry Chemical Physics, 2012, 14, 13046.	1.3	47
12	Robust Room-Temperature NO ₂ Sensors from Exfoliated 2D Few-Layered CVD-Grown Bulk Tungsten Di-selenide (2H-WSe ₂). ACS Applied Materials & Samp; Interfaces, 2021, 13, 4316-4329.	4.0	45
13	Reactions of Low Valent Transition Metal Complexes with Hydrogen Peroxide. Are they "Fenton-Like― or not? 4. The Case of Fe(II)L, L = Edta; Hedta and Tcma. Free Radical Research, 1995, 23, 453-463.	1.5	43
14	Combined Electron Paramagnetic Resonance and Atomic Absorption Spectroscopy/Inductively Coupled Plasma Analysis As Diagnostics for Soluble Manganese Species from Mn-Based Positive Electrode Materials in Li-ion Cells. Analytical Chemistry, 2016, 88, 4440-4447.	3.2	43
15	Copper trafficking in eukaryotic systems: current knowledge from experimental and computational efforts. Current Opinion in Structural Biology, 2019, 58, 26-33.	2.6	39
16	Structural and Dynamics Characterization of the MerR Family Metalloregulator CueR in its Repression and Activation States. Structure, 2017, 25, 988-996.e3.	1.6	38
17	Reaction of Methyl Radicals with Metal Powders Immersed in Aqueous Solutions. European Journal of Inorganic Chemistry, 2003, 2003, 4227-4233.	1.0	35
18	Double Electron Electron Resonance as a Method for Characterization of Micelles. Journal of Physical Chemistry B, 2005, 109, 22843-22851.	1.2	35

#	Article	IF	Citations
19	Imidazole decorated reduced graphene oxide: A biomimetic ligand for selective oxygen reduction electrocatalysis with Metalloporphyrins. Carbon, 2019, 143, 223-229.	5.4	35
20	High-Resolution Cryogenic-Electron Microscopy Reveals Details of a Hexagonal-to-Bicontinuous Cubic Phase Transition in Mesoporous Silica Synthesis. Journal of the American Chemical Society, 2009, 131, 12466-12473.	6.6	34
21	The Arabidopsis Cysteine-Rich GASA5 Is a Redox-Active Metalloprotein that Suppresses Gibberellin Responses. Molecular Plant, 2014, 7, 244-247.	3.9	34
22	Environmental impact and potential use of coal fly ash and sub-economical quarry fine aggregates in concrete. Journal of Hazardous Materials, 2018, 344, 1043-1056.	6.5	34
23	Field and Laboratory Simulation Study of Hot Spots in Stockpiled Bituminous Coal. Energy & En	2.5	32
24	EPR Spectroscopy Shows that the Blood Carrier Protein, Human Serum Albumin, Closely Interacts with the N-Terminal Domain of the Copper Transporter, Ctr1. Journal of Physical Chemistry B, 2015, 119, 4824-4830.	1.2	32
25	Distribution of guest molecules in Pluronic micelles studied by double electron electron spin resonance and small angle X-ray scattering. Physical Chemistry Chemical Physics, 2009, 11, 148-160.	1.3	28
26	Sensitive Cu ²⁺ â€"Cu ²⁺ Distance Measurements in a Proteinâ€"DNA Complex by Double-Quantum Coherence ESR. Journal of Physical Chemistry B, 2013, 117, 6227-6230.	1.2	28
27	Reducing the spin–spin interaction of stable carbon radicals. Physical Chemistry Chemical Physics, 2013, 15, 6182.	1.3	28
28	Tertiary-poly-amine ligands as stabilisers of transition metal complexes with uncommon oxidation states. Supramolecular Chemistry, 1996, 6, 275-279.	1.5	27
29	Elucidating the role of stable carbon radicals in the low temperature oxidation of coals by coupled EPR–NMR spectroscopy – a method to characterize surfaces of porous carbon materials. Physical Chemistry Chemical Physics, 2014, 16, 9364.	1.3	27
30	Emission of toxic and fire hazardous gases from open air coal stockpiles. Fuel, 1994, 73, 1184-1188.	3.4	26
31	CO ₂ Adsorption Inside the Pore Structure of Different Rank Coals during Low Temperature Oxidation of Open Air Coal Stockpiles. Energy &	2.5	26
32	Stabilized Behavior of LiNi _{0.85} Co _{0.10} Mn _{0.05} O ₂ Cathode Materials Induced by Their Treatment with SO ₂ . ACS Applied Energy Materials, 2020, 3, 3609-3618.	2.5	25
33	Modulation of Oxygen Content in Graphene Surfaces Using Temperature-Programmed Reductive Annealing: Electron Paramagnetic Resonance and Electrochemical Study. Langmuir, 2016, 32, 11672-11680.	1.6	24
34	Neutralization of acid mine drainage by Turkish lignitic fly ashes; role of organic additives in the fixation of toxic elements. Journal of Chemical Technology and Biotechnology, 2002, 77, 372-376.	1.6	23
35	Effect of Silica-Supported Silver Nanoparticles on the Dihydrogen Yields from Irradiated Aqueous Solutions. Journal of Physical Chemistry C, 2007, 111, 10461-10466.	1.5	23
36	Organic volatiles emissions accompanying the low-temperature atmospheric storage of bituminous coals. Fuel, 1995, 74, 1357-1362.	3.4	22

#	Article	IF	CITATIONS
37	Syntheses, Structures and Properties of Copper(I) and Copper(II) Complexes of the LigandN,N′-Bis[2′-(dimethylamino)ethyl]-N,N′-dimethylethane1,2-diamine (Me6trien). European Journal of Inorganic Chemistry, 2000, 2000, 719-726.	f 1.0	22
38	The relationship of morphology and catalytic activity: A case study of iron corrole incorporated in high surface area carbon supports. Carbon, 2020, 158, 238-243.	5.4	22
39	Mechanistic Studies on the Role of [Cu ^{l [Cu^l (CO₃)_{<i>n</i>}]^{2â^'2<i>n</i>} as a Water Oxidation Catalyst: Carbonate as a Nonâ€Innocent Ligand. Chemistry - A European Journal, 2018, 24, 1088-1096.}	1.7	21
40	Kinetics and Reaction Mechanisms of Complexes with Cobaltâ Carbon \ddot{l}_f Bonds of the Type $\{(NH3)5Co\hat{a}^2R\}_n+$ in Aqueous Solutions, a Pulse Radiolysis Study. European Journal of Inorganic Chemistry, 2002, 2002, 87-92.	1.0	20
41	EPR studies on the organization of self-assembled spin-labeled organic monolayers adsorbed on GaAs. Physical Chemistry Chemical Physics, 2005, 7, 524.	1.3	20
42	Evolution of Solution Structures during the Formation of the Cubic Mesoporous Material, KIT-6, Determined by Double Electronâ^'Electron Resonance. Journal of Physical Chemistry C, 2008, 112, 7102-7109.	1.5	20
43	Probing the Structural Flexibility of the Human Copper Metallochaperone Atox1 Dimer and Its Interaction with the CTR1 C-Terminal Domain. Journal of Physical Chemistry B, 2014, 118, 5832-5842.	1.2	20
44	Evolution of molecular hydrogen during the atmospheric oxidation of coal. Fuel, 1991, 70, 897-898.	3.4	19
45	Insights into the N-terminal Cu(II) and Cu(I) binding sites of the human copper transporter CTR1. Journal of Coordination Chemistry, 2018, 71, 1985-2002.	0.8	19
46	Properties of the Nickel(III) Complex with 1,4,8,11-Tetraazacyclotetradecane-1,4,8,11-tetraacetate in Aqueous Solution. Inorganic Chemistry, 1996, 35, 5127-5131.	1.9	18
47	EPR Measurements corroborate information concerning the nature of (H2O)5CrIII–alkyl complexes. Dalton Transactions RSC, 2000, , 3082-3085.	2.3	18
48	Ligand Effects on the Reactivity of CulL Complexes Towards Cl3CCO2â . European Journal of Inorganic Chemistry, 2002, 2002, 423-429.	1.0	18
49	Chemical neutralization of acidic wastes using fly ash in Israel. Journal of Chemical Technology and Biotechnology, 2002, 77, 377-381.	1.6	16
50	Cu(i)(2,5,8,11-tetramethyl-2,5,8,11-tetraazadodecane)+as a catalyst for Ullmann's reaction. Dalton Transactions, 2003, , 2024-2028.	1.6	16
51	Pulsed Electron Spin Resonance Resolves the Coordination Site of Cu2+ Ions in $\hat{l}\pm 1$ -Glycine Receptor. Biophysical Journal, 2010, 99, 2497-2506.	0.2	16
52	Chemical and Surface Transformations of Bituminous Coal Fly Ash Used in Israel Following Treatments with Acidic and Neutral Aqueous Solutions. Energy & Energy & 2014, 28, 4657-4665.	2.5	16
53	The involvement of carbon-centered radicals in the aging process of coals under atmospheric conditions: an EPR study. Physical Chemistry Chemical Physics, 2018, 20, 27025-27035.	1.3	16
54	Unraveling the Impact of Cysteine-to-Serine Mutations on the Structural and Functional Properties of Cu(I)-Binding Proteins. International Journal of Molecular Sciences, 2019, 20, 3462.	1.8	16

#	Article	IF	Citations
55	Cu(<scp>ii</scp>)-based DNA labeling identifies the structural link between transcriptional activation and termination in a metalloregulator. Chemical Science, 2022, 13, 1693-1697.	3.7	16
56	Mechanism of Reduction of the Nitrite Ion by Cul Complexes. European Journal of Inorganic Chemistry, 2004, 2004, 3675.	1.0	15
57	The pivotal role of MBD4–ATP7B in the human Cu(<scp>i</scp>) excretion path as revealed by EPR experiments and all-atom simulations. Metallomics, 2019, 11, 1288-1297.	1.0	15
58	A simple double quantum coherence ESR sequence that minimizes nuclear modulations in Cu2+-ion based distance measurements. Journal of Magnetic Resonance, 2015, 257, 45-50.	1.2	14
59	The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations. Protein Science, 2017, 26, 1609-1618.	3.1	14
60	EPR Spectroscopy Targets Structural Changes in the E.Âcoli Membrane Fusion CusB upon Cu(I) Binding. Biophysical Journal, 2017, 112, 2494-2502.	0.2	14
61	Enantioselective Crystallization of Chiral Inorganic Crystals of ϵâ€Zn(OH) 2 with Amino Acids. Angewandte Chemie - International Edition, 2020, 59, 20924-20929.	7.2	14
62	Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2021, 22, 2050.	1.8	14
63	Modes of Formation of Carbon Oxides [CO $<$ sub $<$ i> $<$ i> $<$ i> $<$ i/sub $>$ ($<$ i> $<$ i> $<$ i/sub $>$) [From Coals during Atmospheric Storage. Part 2: Effect of Coal Rank on the Kinetics. Energy & Effect of Coal Rank on the Kinetics. Energy & Effect of Coal Rank on the Kinetics. Energy & Effect of Coal Rank on the Kinetics.	2.5	13
64	EPR and NMR spectroscopies provide input on the coordination of Cu(I) and Ag(I) to a disordered methionine segment. Journal of Biological Inorganic Chemistry, 2015, 20, 719-727.	1.1	13
65	TGA–DSC Combined Coal Analysis as a Tool for QC (Quality Control) and Reactivity Patterns of Coals. ACS Omega, 2022, 7, 1893-1907.	1.6	13
66	EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Metallomics, 2015, 7, 1163-1172.	1.0	12
67	Ctr1 Intracellular Loop Is Involved in the Copper Transfer Mechanism to the Atox1 Metallochaperone. Journal of Physical Chemistry B, 2016, 120, 12334-12345.	1.2	12
68	Ligand Effects on the Chemical Activity of Copper(I) Complexes: Outer- and Inner-Sphere Oxidation of CulL. European Journal of Inorganic Chemistry, 2007, 2007, 530-536.	1.0	11
69	Modes of Formation of Carbon Oxides (CO _{<i>x</i>} (<i>x</i> = 1,2)) From Coals During Atmospheric Storage: Part I Effect of Coal Rank. Energy & Samp; Fuels, 2010, 24, 6366-6374.	2.5	11
70	Exploring the interaction between the human copper transporter, CTR1, c-terminal domain and a methionine motif in the presence of $Cu(I)$ and $Ag(I)$ ions, using EPR spectroscopy. Molecular Physics, 2013, 111, 2980-2991.	0.8	10
71	Potential of Hazardous Waste Encapsulation in Concrete Compound Combination with Coal Ash and Quarry Fine Additives. Environmental Science & Encapsulation (2015, 49, 14146-14155).	4.6	10
72	Does the ATSM-Cu(II) Biomarker Integrate into the Human Cellular Copper Cycle?. ACS Omega, 2019, 4, 12278-12285.	1.6	10

#	Article	IF	Citations
73	Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study. Journal of Physical Chemistry B, 2020, 124, 4399-4411.	1.2	10
74	SOD mimetic activity and antiproliferative properties of a novel tetra nuclear copper (II) complex. Journal of Biological Inorganic Chemistry, 2015, 20, 1287-1298.	1.1	9
75	EPR Distance Measurements as a Tool to Characterize Proteinâ€DNA Interactions. Israel Journal of Chemistry, 2019, 59, 980-989.	1.0	9
76	Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics. PLoS ONE, 2019, 14, e0227070.	1.1	9
77	EPR Spectroscopy Detects Various Active State Conformations of the Transcriptional Regulator CueR. Angewandte Chemie, 2019, 131, 3085-3088.	1.6	9
78	Phase-Dependent Photocatalytic Activity of Bulk and Exfoliated Defect-Controlled Flakes of Layered Copper Sulfides under Simulated Solar Light. ACS Sustainable Chemistry and Engineering, 2021, 9, 16103-16114.	3.2	9
79	Allosteryâ€driven changes in dynamics regulate the activation of bacterial copper transcription factor. Protein Science, 2022, 31, e4309.	3.1	9
80	High-Pressure Pulse-Radiolysis Study of the Formation and Decomposition of Complexes with Ironâ [^] Carbon Ïf Bonds:Â Mechanistic Comparison for Different Metal Centers. Inorganic Chemistry, 2001, 40, 4966-4970.	1.9	8
81	Mechanism of Reduction of 2,2-Dibromomethyl-1,3-propanediol by Nil-Tetraazamacrocyclic Complexes in Aqueous Solutionâr' A Pulse Radiolysis and Electrochemical Study. European Journal of Inorganic Chemistry, 2003, 2003, 4105-4109.	1.0	8
82	Histidine residues are important for preserving the structure and heme binding to the C. elegans HRG-3 heme-trafficking protein. Journal of Biological Inorganic Chemistry, 2015, 20, 1253-1261.	1.1	8
83	Exploring the role of the various methionine residues in the Escherichia coli CusB adapter protein. PLoS ONE, 2019, 14, e0219337.	1.1	8
84	Investigation of a KcsA Cytoplasmic pH Gate in Lipoprotein Nanodiscs. ChemBioChem, 2019, 20, 813-821.	1.3	8
85	An EPR Study on the Interaction between the Cu(I) Metal Binding Domains of ATP7B and the Atox1 Metallochaperone. International Journal of Molecular Sciences, 2020, 21, 5536.	1.8	8
86	Reduction of CCl4 by Iron Powder in Aqueous Solution. European Journal of Inorganic Chemistry, 2005, 2005, 1227-1229.	1.0	7
87	A New Oxopiperazinâ€Based Peptidomimetic Molecule Inhibits Prostatic Acid Phosphatase Secretion and Induces Prostate Cancer Cell Apoptosis. ChemistrySelect, 2016, 1, 4658-4667.	0.7	7
88	Molecular Dynamics Simulations of the Apo and Holo States of the Copper Binding Protein CueR Reveal Principal Bending and Twisting Motions. Journal of Physical Chemistry B, 2021, 125, 9417-9425.	1.2	7
89	Oxidation of Ascorbate by Ni(III) Complexes with Tetraaza-macrocyclic Ligands in Neutral Aqueous Solutions. A Pulse-Radiolysis Study. Supramolecular Chemistry, 2001, 13, 325-332.	1.5	6
90	Different oxidation mechanisms of Mn ^{II} (polyphosphate) _n by the radicals and. Journal of Coordination Chemistry, 2016, 69, 1709-1721.	0.8	6

#	Article	IF	CITATIONS
91	Treated Oil Shale Ashes as a Substitute for Natural Aggregates, Sand, and Cement in Concrete. Israel Journal of Chemistry, 2020, 60, 638-643.	1.0	6
92	Dynamical interplay between the human high-affinity copper transporter hCtr1 and its cognate metal ion. Biophysical Journal, 2022, 121, 1194-1204.	0.2	6
93	Mechanism of Isomerization of Ni(cyclam) in Aqueous Solutions. European Journal of Inorganic Chemistry, 2005, 2005, 4997-5004.	1.0	5
94	The Effect of an Electrical Bias on the Mechanism of Decomposition of Transients with Metal–Carbon Ïf Bonds. European Journal of Inorganic Chemistry, 2010, 2010, 3252-3255.	1.0	5
95	Mechanism Underlying the Emission of Gases during the Low-Temperature Oxidation of Bituminous and Lignite Coal Piles: The Involvement of Radicals. ACS Omega, 2020, 5, 28500-28509.	1.6	5
96	Nitrogen concentration and anisotropic effects on the EPR spectra of natural diamonds. CrystEngComm, 2021, 23, 3453-3459.	1.3	5
97	The Advantages of EPR Spectroscopy in Exploring Diamagnetic Metal Ion Binding and Transfer Mechanisms in Biological Systems. Magnetochemistry, 2022, 8, 3.	1.0	5
98	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 179-184.	1.6	4
99	Neuroligin-2-derived peptide-covered polyamidoamine-based (PAMAM) dendrimers enhance pancreatic \hat{l}^2 -cells' proliferation and functions. MedChemComm, 2019, 10, 280-293.	3.5	4
100	On the mechanism of reduction of maleate by a Co(I) complex with a macrocylic ligand in aqueous solutions. Journal of Coordination Chemistry, 2010, 63, 2528-2541.	0.8	3
101	On the reactions of methyl radicals with nitrilotris(methylenephosphonic-acid) complexes in aqueous solutions. Journal of Coordination Chemistry, 2019, 72, 3445-3457.	0.8	3
102	Enantioselective Crystallization of Chiral Inorganic Crystals of ϵâ€Zn(OH) 2 with Amino Acids. Angewandte Chemie, 2020, 132, 21110-21115.	1.6	3
103	The effects of thermal treatment and irradiation on the chemical properties of natural diamonds. Physical Chemistry Chemical Physics, 2022, 24, 11696-11703.	1.3	3
104	Pyrophosphate and ATP as Stabilizing Ligands for High-Valent Nickel Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 523-525.	1.0	2
105	On the Mechanism of Reduction of Maleate Ions by NilComplexes with Tetraazamacrocyclic Ligands in Aqueous Solutions. European Journal of Inorganic Chemistry, 2014, 2014, 932-940.	1.0	2
106	Exploring the Radical Nature of a Carbon Surface by Electron Paramagnetic Resonance and a Calibrated Gas Flow. Journal of Visualized Experiments, 2014, , .	0.2	2
107	Peptide-based development of PKA activators. New Journal of Chemistry, 2018, 42, 18585-18597.	1.4	2
108	Reactions of carbonate radical anion with amino-carboxylate complexes of manganese(II) and iron(III). Journal of Coordination Chemistry, 2018, 71, 1749-1760.	0.8	2

#	Article	IF	CITATIONS
109	Redox Properties of CeIVDOTA in Carbonated Aqueous Solutions. A Radiolytic and an Electrochemical Study. Journal of Physical Chemistry A, 2021, 125, 1436-1446.	1.1	2
110	Cellular Uptake of the ATSMâ^Cu(II) Complex under Hypoxic Conditions. ChemistryOpen, 2021, 10, 486-492.	0.9	2
111	Inherent Minor Conformer of <i>Bordetella</i> Effector BteA Directs Chaperone-Mediated Unfolding. Journal of the American Chemical Society, 2022, 144, 11553-11557.	6.6	2
112	Effect of pressure on an intramolecular electron-transfer reaction induced by pulse-radiolysis. High Pressure Research, 1991, 6, 287-290.	0.4	1
113	Catalyzed Autoxidation of Hydrogensulfite by Cobalt(II) (2,3,9,10-tetraene) (H 2 O) 2 2+. Supramolecular Chemistry, 2002, 14, 221-229.	1.5	1
114	Syntheses, Structures and Properties of Copper(I) and Copper(II) Complexes of the Ligand N,Nâ \in 2-Bis[2â \in 2-(dimethylamino)ethyl]-N,Nâ \in 2-dimethylethane1,2-diamine (Me6trien). European Journal of Inorganic Chemistry, 2000, 2000, 719-726.	1.0	1
115	Chemical neutralization of acidic wastes using fly ash in Israel Paper presented at the PROGRES Workshop: Novel Products from Combustion Residues, 6–8 June 2001, Morella, Spain. Journal of Chemical Technology and Biotechnology, 2002, 77, 377.	1.6	1
116	The Redox Chemistry of (N1-[3-(2-aminoethylimino)-1,1-dimethylbutyl]ethane-1,2-diamine)nickel(II) Perchlorate, NillL1(ClO4)2, in Aqueous Solutions -A Pulse Radiolytic and an Electrochemical Study. European Journal of Inorganic Chemistry, 2005, 2005, 4335-4340.	1.0	0
117	A novel Celll-cyclam type complex and its redox chemistry in aqueous solutions. Research on Chemical Intermediates, 2009, 35, 543-554.	1.3	0
118	Correction: Gd(iii)–Gd(iii) EPR distance measurements – the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics, 2016, 18, 18614-18614.	1.3	0
119	Innentitelbild: EPR Spectroscopy Detects Various Active State Conformations of the Transcriptional Regulator CueR (Angew. Chem. 10/2019). Angewandte Chemie, 2019, 131, 2934-2934.	1.6	0
120	Thermal Stability of Carbon-Centered Radicals Involved in Low-Temperature Oxidation of Bituminous and Lignite Coals as a Function of Temperature. ACS Omega, 2021, 6, 33428-33435.	1.6	0
121	Effect of Diamond Polishing and Thermal Treatment on Carbon Paramagnetic Centers' Nature and Structure. Materials, 2021, 14, 7719.	1.3	0
122	Exploring the role of the various methionine residues in the Escherichia coli CusB adapter protein., 2019, 14, e0219337.		0
123	Exploring the role of the various methionine residues in the Escherichia coli CusB adapter protein. , 2019, 14, e0219337.		0
124	Exploring the role of the various methionine residues in the Escherichia coli CusB adapter protein., $2019, 14, e0219337.$		0
125	Exploring the role of the various methionine residues in the Escherichia coli CusB adapter protein. , 2019, 14, e0219337.		0
126	Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics. , 2019, 14, e0227070.		0

#	Article	IF	CITATIONS
127	Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics. , 2019, 14, e0227070.		O
128	Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics. , 2019, 14, e0227070.		0
129	Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics. , 2019, 14, e0227070.		O