Dick van Oevelen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228828/publications.pdf Version: 2024-02-01

		361413	434195
31	2,334	20	31
papers	citations	h-index	g-index
32	32	32	2203
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surviving in a Marine Desert: The Sponge Loop Retains Resources Within Coral Reefs. Science, 2013, 342, 108-110.	12.6	656
2	Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research, 2017, 129, 76-101.	2.5	258
3	The coldâ€water coral community as hotspot of carbon cycling on continental margins: A foodâ€web analysis from Rockall Bank (northeast Atlantic). Limnology and Oceanography, 2009, 54, 1829-1844.	3.1	179
4	Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Scientific Reports, 2016, 6, 18715.	3.3	145
5	Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Frontiers in Marine Science, 2015, 2, .	2.5	142
6	The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. Journal of Experimental Marine Biology and Ecology, 2010, 395, 55-62.	1.5	112
7	Climateâ€induced changes in the suitable habitat of coldâ€water corals and commercially important deepâ€sea fishes in the North Atlantic. Global Change Biology, 2020, 26, 2181-2202.	9.5	109
8	Differential recycling of coral and algal dissolved organic matter via the sponge loop. Functional Ecology, 2017, 31, 778-789.	3.6	107
9	Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME Journal, 2020, 14, 2554-2567.	9.8	72
10	Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Scientific Reports, 2016, 5, 17962.	3.3	65
11	Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Scientific Reports, 2016, 6, 35057.	3.3	62
12	Carbon flows in the benthic food web of the Porcupine Abyssal Plain: The (un)importance of labile detritus in supporting microbial and faunal carbon demands. Limnology and Oceanography, 2012, 57, 645-664.	3.1	43
13	The Symbiosis between Lophelia pertusa and Eunice norvegica Stimulates Coral Calcification and Worm Assimilation. PLoS ONE, 2013, 8, e58660.	2.5	39
14	Survival under conditions of variable food availability: Resource utilization and storage in the coldâ€water coral <i>Lophelia pertusa</i> . Limnology and Oceanography, 2019, 64, 1651-1671.	3.1	36
15	Seasonal controls on the diet, metabolic activity, tissue reserves and growth of the cold-water coral Lophelia pertusa. Coral Reefs, 2020, 39, 173-187.	2.2	31
16	Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Scientific Reports, 2020, 10, 9942.	3.3	30
17	Direct Visualization of Mucus Production by the Cold-Water Coral Lophelia pertusa with Digital Holographic Microscopy. PLoS ONE, 2016, 11, e0146766.	2.5	29
18	Benthic Oxygen and Nitrogen Exchange on a Cold-Water Coral Reef in the North-East Atlantic Ocean. Frontiers in Marine Science, 2019, 6, .	2.5	28

DICK VAN OEVELEN

#	Article	IF	CITATIONS
19	Cabled ocean observatory data reveal food supply mechanisms to a cold-water coral reef. Progress in Oceanography, 2019, 172, 51-64.	3.2	28
20	Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators, 2020, 119, 106624.	6.3	23
21	Food selectivity and processing by the cold-water coral <i>Lophelia pertusa</i> . Biogeosciences, 2016, 13, 5789-5798.	3.3	20
22	The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Scientific Data, 2020, 7, 206.	5.3	18
23	Reef communities associated with â€~dead' cold-water coral framework drive resource retention and recycling in the deep sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 175, 103574.	1.4	18
24	An Integrative Model of Carbon and Nitrogen Metabolism in a Common Deep-Sea Sponge (Geodia) Tj ETQq0 0 0	rgBT /Ove 2.5	rlock 10 Tf 5
25	Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition. Marine Biology Research, 2018, 14, 287-306.	0.7	13

26	Spatial Self-Organization as a New Perspective on Cold-Water Coral Mound Development. Frontiers in Marine Science, 2020, 7, .	2.5	13
27	Dark CO ₂ fixation into phospholipid-derived fatty acids by the cold-water coral associated sponge <i>Hymedesmia</i> (<i>Stylopus</i>) <i>coriacea</i> (Tisler Reef, NE Skagerrak). Marine Biology Research, 2020, 16, 1-17.	0.7	11
28	Feedbacks between hydrodynamics and cold-water coral mound development. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 178, 103641.	1.4	10
29	Niche overlap between a cold-water coral and an associated sponge for isotopically-enriched particulate food sources. PLoS ONE, 2018, 13, e0194659.	2.5	9
30	Linking large-scale circulation patterns to the distribution of cold water corals along the eastern Rockall Bank (northeast Atlantic). Journal of Marine Systems, 2020, 212, 103456.	2.1	7
31	Identification of tolerance levels on the cold-water coral Desmophyllum pertusum (Lophelia pertusa) from realistic exposure conditions to suspended bentonite, barite and drill cutting particles. PLoS	2.5	4