
Flavio H Gutierrez Boem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting soil test phosphorus decrease in nonâ€Pâ€fertilized conditions. European Journal of Soil Science, 2021, 72, 254-264.	3.9	6
2	ls the Lack of Response of Maize to Fertilization in Soils with Low Bray1-P Related to Labile Organic Phosphorus?. Journal of Soil Science and Plant Nutrition, 2021, 21, 612-621.	3.4	3
3	Grain hordein content and malt quality as affected by foliar nitrogen fertilisation at heading. Journal of the Institute of Brewing, 2021, 127, 224-231.	2.3	6
4	Sulfur partitioning and grain concentration differed from that for nitrogen in malting barley. Field Crops Research, 2021, 263, 108053.	5.1	3
5	Crop sequence and P fertilization effects on soil P fractions under no-tillage. Nutrient Cycling in Agroecosystems, 2021, 120, 275.	2.2	2
6	Attainable yield and soil texture as drivers of maize response to nitrogen: A synthesis analysis for Argentina. Field Crops Research, 2021, 273, 108299.	5.1	12
7	Longâ€ŧerm fertilization does not affect soil carbon/nitrogen/sulfur ratios or the proportion between labile and nonlabile fractions in Mollisols. Soil Science Society of America Journal, 2020, 84, 798-810.	2.2	4
8	Assessing soil P fractions changes with longâ€ŧerm phosphorus fertilization related to crop yield of soybean and maize. Soil Use and Management, 2020, 36, 524-535.	4.9	13
9	Subtilase activity and gene expression during germination and seedling growth in barley. Plant Physiology and Biochemistry, 2019, 139, 197-206.	5.8	11
10	Sulphur fertilization of barley crops improves malt extract and fermentability. Journal of Cereal Science, 2019, 85, 228-235.	3.7	9
11	Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: Soil test trends, critical levels and balances. European Journal of Agronomy, 2018, 96, 87-95.	4.1	55
12	Environmental control of malting barley response to nitrogen in the Pampas, Argentina. International Journal of Plant Production, 2018, 12, 127-137.	2.2	13
13	A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Microbiological Research, 2018, 206, 50-59.	5.3	53
14	Phloem transport of assimilates in relation to flowering time and senescence in barley grown with different availabilities of nitrogen and phosphorus. Archives of Agronomy and Soil Science, 2018, 64, 492-504.	2.6	3
15	Contrasting Effects of Phosphorus and Potassium Deficiencies on Leaf Area Development in Maize. Crop Science, 2018, 58, 2099-2109.	1.8	10
16	N:P:S stoichiometry in grains and physiological attributes associated with grain yield in maize as affected by phosphorus and sulfur nutrition. Field Crops Research, 2017, 203, 128-138.	5.1	30
17	A modification of the arcsine–log calibration curve for analysing soil test value–relative yield relationships. Crop and Pasture Science, 2017, 68, 297.	1.5	20
18	Soil Characteristics Involved in Phosphorus Sorption in Mollisols. Soil Science Society of America Journal, 2016, 80, 1585-1590.	2.2	5

Flavio H Gutierrez Boem

#	Article	IF	CITATIONS
19	Post-anthesis N and P dynamics and its impact on grain yield and quality in mycorrhizal barley plants. Mycorrhiza, 2015, 25, 229-235.	2.8	12
20	Protein content of grains of different size fractions in malting barley. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	18
21	Phloem sugars and amino acids as potential regulators of hordein expression in field grown malting barley (Hordeum vulgare L.). Journal of Cereal Science, 2014, 60, 433-439.	3.7	15
22	Severe Phosphorus Stress Affects Sunflower and Maize but Not Soybean Root to Shoot Allometry. Agronomy Journal, 2013, 105, 1283-1288.	1.8	8
23	Interlaboratory and Intralaboratory Testing of Soil Sulfate Analysis in Mollisols of the Pampas. Communications in Soil Science and Plant Analysis, 2012, 43, 2535-2543.	1.4	0
24	Rhizosphere phosphorus depletion by three crops differing in their phosphorus critical levels. Journal of Plant Nutrition and Soil Science, 2012, 175, 810-871.	1.9	13
25	Identifying sulfur deficient fields by using sulfur content; N:S ratio and nutrient stoichiometric relationships in soybean seeds. Field Crops Research, 2012, 135, 107-115.	5.1	28
26	Distribution and vertical stratification of carbon and nitrogen in soil under different managements in the pampean region of Argentina. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1985-1994.	1.3	7
27	Effect of indigenous mycorrhizal colonization on phosphorus-acquisition efficiency in soybean and sunflower. Journal of Plant Nutrition and Soil Science, 2011, 174, 673-677.	1.9	19
28	The effect of root exudates on root architecture in Arabidopsis thaliana. Plant Growth Regulation, 2011, 64, 241-249.	3.4	28
29	Soil Phosphorus Extracted by Bray 1 and Mehlich 3 Soil Tests as Affected by the Soil/Solution Ratio in Mollisols. Communications in Soil Science and Plant Analysis, 2011, 42, 220-230.	1.4	28
30	Responses of C ₃ and C ₄ grasses to application of nitrogen and phosphorus fertilizer at two dates in the spring. Grass and Forage Science, 2010, 65, 102-109.	2.9	16
31	Compared Phosphorus Efficiency in Soybean, Sunflower and Maize. Journal of Plant Nutrition, 2009, 32, 2027-2043.	1.9	26
32	Topsoil Properties as Affected by Tillage Systems in the Rolling Pampa Region of Argentina. Soil Science Society of America Journal, 2009, 73, 1242-1250.	2.2	78
33	Phosphorus Retention on Soil Surface of Tilled and Noâ€ŧilled Soils. Soil Science Society of America Journal, 2008, 72, 1158-1162.	2.2	20
34	Estimating Available Soil Phosphorus Increases after Phosphorus Additions in Mollisols. Soil Science Society of America Journal, 2008, 72, 1721-1727.	2.2	29
35	Seed Number and Yield Determination in Sulfur Deficient Soybean Crops. Journal of Plant Nutrition, 2007, 30, 93-104.	1.9	22
36	Effects of soil flooding on P transformations in soils of the Mesopotamia region, Argentina. Journal of Plant Nutrition and Soil Science, 2007, 170, 500-505.	1.9	16

Flavio H Gutierrez Boem

#	ARTICLE	IF	CITATIONS
37	Late season nitrogen fertilization of soybeans: effects on leaf senescence, yield and environment. Nutrient Cycling in Agroecosystems, 2004, 68, 109-115.	2.2	32
38	Sunflower nitrogen requirement and 15N fertilizer recovery in Western Pampas, Argentina. European Journal of Agronomy, 2002, 17, 73-79.	4.1	42
39	LEAF AREA DEVELOPMENT IN SOYBEAN AS AFFECTED BY PHOSPHORUS NUTRITION AND WATER DEFICIT. Journal of Plant Nutrition, 2001, 24, 1711-1729.	1.9	19
40	Root growth and phosphorus uptake in wide―and narrowâ€row soybeans. Journal of Plant Nutrition, 2000, 23, 1241-1249.	1.9	6
41	Phosphorus nutrition and water deficits in field-grown soybeans. Plant and Soil, 1998, 207, 87-96.	3.7	42
42	Phosphorus Nutrition Affects Wheat Response to Water Deficit. Agronomy Journal, 1998, 90, 166-171.	1.8	55
43	Effects of Waterlogging Followed by a Salinity Peak on Rapeseed (Brassica napus L.). Journal of Agronomy and Crop Science, 1997, 178, 135-140.	3.5	8
44	Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Research, 1996, 47, 175-179.	5.1	59
45	The effects of soil sodicity on emergence, growth, development and yield of oilseed rape (<i>Brassica) Tj ETQq1</i>	l 0,78431 1.3	4 rgBT /Ove
46	The K/Na and Ca/Na ratios and rapeseed yield, under soil salinity or sodicity. Plant and Soil, 1995, 175, 251-255.	3.7	53
47	Some Effects of Soil Salinity on Growth, Development and Yield of Rapeseed (<i>Brassica napus</i> L.). Journal of Agronomy and Crop Science, 1994, 172, 182-187.	3.5	18
48	Effect of retention of run-off water and grazing on soil and on vegetation of a temperate humid grassland. Agricultural Water Management, 1993, 23, 233-246.	5.6	19