Laia Tolosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicology in Vitro, 2013, 27, 954-963.	2.4	349
2	Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Methods in Molecular Biology, 2015, 1250, 77-93.	0.9	178
3	General Cytotoxicity Assessment by Means of the MTT Assay. Methods in Molecular Biology, 2015, 1250, 333-348.	0.9	155
4	Competency of different cell models to predict human hepatotoxic drugs. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 1553-1568.	3.3	152
5	Development of a Multiparametric Cell-based Protocol to Screen and Classify the Hepatotoxicity Potential of Drugs. Toxicological Sciences, 2012, 127, 187-198.	3.1	105
6	Vascular endothelial growth factor protects spinal cord motoneurons against glutamateâ€induced excitotoxicity via phosphatidylinositol 3â€kinase. Journal of Neurochemistry, 2008, 105, 1080-1090.	3.9	99
7	Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Archives of Toxicology, 2019, 93, 1609-1637.	4.2	86
8	TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB. Molecular and Cellular Neurosciences, 2011, 46, 176-186.	2.2	83
9	Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-Regulated in Nonalcoholic Fatty Liver. PLoS ONE, 2012, 7, e30014.	2.5	77
10	Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Research and Therapy, 2015, 6, 246.	5.5	69
11	HepC2 cells simultaneously expressing five P450 enzymes for the screening of hepatotoxicity: identification of bioactivable drugs and the potential mechanism of toxicity involved. Archives of Toxicology, 2013, 87, 1115-1127.	4.2	68
12	High-Content Imaging Technology for the Evaluation of Drug-Induced Steatosis Using a Multiparametric Cell-Based Assay. Journal of Biomolecular Screening, 2012, 17, 394-400.	2.6	64
13	Metabolic activation and drugâ€induced liver injury: <i>in vitro</i> approaches for the safety risk assessment of new drugs. Journal of Applied Toxicology, 2016, 36, 752-768.	2.8	64
14	Tumor necrosis factor alpha and interferon gamma cooperatively induce oxidative stress and motoneuron death in rat spinal cord embryonic explants. Neuroscience, 2009, 162, 959-971.	2.3	62
15	Complementary roles of tumor necrosis factor alpha and interferon gamma in inducible microglial nitric oxide generation. Journal of Neuroimmunology, 2008, 204, 101-109.	2.3	56
16	Hepatocyte transplantation program: Lessons learned and future strategies. World Journal of Gastroenterology, 2016, 22, 874.	3.3	56
17	Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicology and Applied Pharmacology, 2016, 302, 1-9.	2.8	55
18	Human Upcyte Hepatocytes: Characterization of the Hepatic Phenotype and Evaluation for Acute and Long-Term Hepatotoxicity Routine Testing. Toxicological Sciences, 2016, 152, 214-229.	3.1	52

LAIA TOLOSA

#	Article	IF	CITATIONS
19	IFN-γ prevents TNF-α-induced apoptosis in C2C12 myotubes through down-regulation of TNF-R2 and increased NF-κB activity. Cellular Signalling, 2005, 17, 1333-1342.	3.6	47
20	Comparing in vitro human liver models to in vivo human liver using RNA-Seq. Archives of Toxicology, 2021, 95, 573-589.	4.2	47
21	High-content screening technology for studying drug-induced hepatotoxicity in cell models. Archives of Toxicology, 2015, 89, 1007-1022.	4.2	45
22	Vascular endothelial growth factor protects motoneurons from serum deprivation–induced cell death through phosphatidylinositol 3-kinase-mediated p38 mitogen-activated protein kinase inhibition. Neuroscience, 2009, 158, 1348-1355.	2.3	43
23	High-content screening of drug-induced mitochondrial impairment in hepatic cells: effects of statins. Archives of Toxicology, 2015, 89, 1847-1860.	4.2	42
24	Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Archives of Toxicology, 2016, 90, 2049-2061.	4.2	42
25	Relevance of the incubation period in cytotoxicity testing with primary human hepatocytes. Archives of Toxicology, 2018, 92, 3505-3515.	4.2	41
26	New microRNA Biomarkers for Drug-Induced Steatosis and Their Potential to Predict the Contribution of Drugs to Non-alcoholic Fatty Liver Disease. Frontiers in Pharmacology, 2017, 8, 3.	3.5	40
27	Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Archives of Toxicology, 2018, 92, 383-399.	4.2	40
28	Neonatal Livers: A Source for the Isolation of Good-Performing Hepatocytes for Cell Transplantation. Cell Transplantation, 2014, 23, 1229-1242.	2.5	39
29	Cellular and molecular mechanisms involved in the neuroprotective effects of VEGF on motoneurons. Frontiers in Cellular Neuroscience, 2013, 7, 181.	3.7	34
30	Clinical Application of Pluripotent Stem Cells. Transplantation, 2016, 100, 2548-2557.	1.0	33
31	Mechanism-based selection of compounds for the development of innovative in vitro approaches to hepatotoxicity studies in the LIINTOP project. Toxicology in Vitro, 2010, 24, 1879-1889.	2.4	32
32	Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment. Toxicology in Vitro, 2012, 26, 1272-1277.	2.4	32
33	Low-density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial hypercholesterolemia modeling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection. Stem Cell Research and Therapy, 2019, 10, 221.	5.5	30
34	Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury. Differentiation, 2019, 106, 15-22.	1.9	28
35	High-Content Screening for the Detection of Drug-Induced Oxidative Stress in Liver Cells. Antioxidants, 2021, 10, 106.	5.1	27
36	Long-term and mechanistic evaluation of drug-induced liver injury in Upcyte human hepatocytes. Archives of Toxicology, 2019, 93, 519-532.	4.2	21

Laia Tolosa

#	Article	IF	CITATIONS
37	Multiparametric evaluation of the cytoprotective effect of the <i>Mangifera indica</i> â€L. stem bark extract and mangiferin in HepG2 cells. Journal of Pharmacy and Pharmacology, 2013, 65, 1073-1082.	2.4	20
38	Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies. Expert Opinion on Drug Discovery, 2017, 12, 201-211.	5.0	18
39	Influence of Platelet Lysate on the Recovery and Metabolic Performance of Cryopreserved Human Hepatocytes Upon Thawing. Transplantation, 2011, 91, 1340-1346.	1.0	16
40	Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 137-148.	3.3	16
41	Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. Annals of Translational Medicine, 2020, 8, 566-566.	1.7	16
42	Human neonatal hepatocyte transplantation induces longâ€ŧerm rescue of unconjugated hyperbilirubinemia in the Gunn rat. Liver Transplantation, 2015, 21, 801-811.	2.4	14
43	Integrate mechanistic evidence from new approach methodologies (NAMs) into a read-across assessment to characterise trends in shared mode of action. Toxicology in Vitro, 2022, 79, 105269.	2.4	14
44	Steatotic liver: a suitable source for the isolation of hepatic progenitor cells. Liver International, 2011, 31, 1231-1238.	3.9	13
45	Regenerative cell therapy for the treatment of hyperbilirubinemic Gunn rats with fresh and frozen human induced pluripotent stem cellsâ€derived hepatic stem cells. Xenotransplantation, 2020, 27, e12544.	2.8	12
46	Assessment of the cytotoxic potential of an aqueous-ethanolic extract from <i>Thalassia testudinum</i> angiosperm marine grown in the Caribbean Sea. Journal of Pharmacy and Pharmacology, 2018, 70, 1553-1560.	2.4	11
47	Oxidative-stress and long-term hepatotoxicity: comparative study in Upcyte human hepatocytes and hepaRG cells. Archives of Toxicology, 2022, 96, 1021-1037.	4.2	9
48	Modulation of biotransformation and elimination systems by BM-21, an aqueous ethanolic extract from Thalassia testudinum, and thalassiolin B on human hepatocytes. Journal of Functional Foods, 2012, 4, 167-176.	3.4	7
49	The in vitro assessment of the toxicity of volatile, oxidisable, redox-cycling compounds: phenols as an example. Archives of Toxicology, 2021, 95, 2109-2121.	4.2	4
50	Hepatogenic Differentiation: Comparison Between Adipose Tissue-Derived Stem Cells and Bone Marrow Mesenchymal Stem Cells. , 2013, , 45-57.		3
51	Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy. Methods in Molecular Biology, 2017, 1506, 17-42.	0.9	3
52	Improved in vivo efficacy of clinical-grade cryopreserved human hepatocytes in mice with acute liver failure. Cytotherapy, 2020, 22, 114-121.	0.7	3
53	Application of high-content screening for the study of hepatotoxicity: Focus on food toxicology. Food and Chemical Toxicology, 2021, 147, 111872.	3.6	3
54	A Novel UPLC-MS Metabolomic Analysis-Based Strategy to Monitor the Course and Extent of iPSC Differentiation to Hepatocytes. Journal of Proteome Research, 2022, , .	3.7	3

Laia Tolosa

#	Article	IF	CITATIONS
55	Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants, 2022, 11, 86.	5.1	3
56	Synthesis and cytotoxic activity of 4-N-carboxybutyl-5-fluorocytosyl-Arg-Gln-Trp-Arg-Arg-Trp-Trp-Gln-Arg-NH2. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4233-4237.	2.2	2
57	Cell Therapies for the Treatment of Inborn Metabolic Errors. , 2015, , 1137-1156.		1
58	A Multiâ€Parametric Fluorescent Assay for the Screening and Mechanistic Study of Drugâ€Induced Steatosis in Liver Cells in Culture. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 72, 14.15.1-14.15.11.	1.1	0
59	Induced pluripotent stem cells in liver disease. , 2021, , 225-250.		0