Michal Kowalczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228365/publications.pdf

Version: 2024-02-01

29 1,039 18
papers citations h-index

29 29 29 296
all docs docs citations times ranked citing authors

29

g-index

#	Article	IF	CITATIONS
1	A hybrid variational principle for the Keller–Segel system in â,,≺sup>2. ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 49, 1553-1576.	1.9	33
2	Transversal instability for the thermodiffusive reaction-diffusion system. Chinese Annals of Mathematics Series B, 2015, 36, 871-882.	0.4	1
3	Singly Periodic Solutions of the Allen-Cahn Equation and the Toda Lattice. Communications in Partial Differential Equations, 2015, 40, 329-356.	2.2	7
4	End-to-end construction for the Allen–Cahn equation in the plane. Calculus of Variations and Partial Differential Equations, 2015, 52, 281-302.	1.7	12
5	Symmetry breaking of nematic umbilical defects through an amplitude equation. Physical Review E, 2014, 90, 012507.	2.1	20
6	Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems - Series S, 2014, 7, 695-724.	1.1	11
7	Traveling Waves with Multiple and Nonconvex Fronts for a Bistable Semilinear Parabolic Equation. Communications on Pure and Applied Mathematics, 2013, 66, 481-547.	3.1	23
8	Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences. Chinese Annals of Mathematics Series B, 2013, 34, 99-112.	0.4	22
9	Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature in π at R^- S. Journal of Differential Geometry, 2013, 93, .	1.1	37
10	On De Giorgi's conjecture and beyond. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6845-6850.	7.1	13
11	The space of 4-ended solutions to the Allen–Cahn equation in the plane. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2012, 29, 761-781.	1.4	21
12	Towards classification of multiple-end solutions to the Allen-Cahn equation in \frac{R}^2 . Networks and Heterogeneous Media, 2012, 7, 837-855.	1.1	5
13	On De Giorgi's conjecture in dimension N≥9. Annals of Mathematics, 2011, 174, 1485-1569.	4.2	165
14	Interface Foliation near Minimal Submanifolds in Riemannian Manifolds with Positive Ricci Curvature. Geometric and Functional Analysis, 2010, 20, 918-957.	1.8	39
15	Multiple-end solutions to the Allenat "Cann equation in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> . Journal of	1.4	70
16	Functional Analysis, 2010, 258, 458-503. The Toda system and multiple-end solutions of autonomous planar elliptic problems. Advances in Mathematics, 2010, 224, 1462-1516.	1.1	43
17	The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28, 975-1006.	0.9	10
18	The Toda System and Clustering Interfaces in the Allen–Cahn equation. Archive for Rational Mechanics and Analysis, 2008, 190, 141-187.	2.4	49

#	Article	IF	CITATION
19	Critical points of the regular part of the harmonic Green function with Robin boundary condition. Journal of Functional Analysis, 2008, 255, 1057-1101.	1.4	7
20	A counterexample to a conjecture by De Giorgi in large dimensions. Comptes Rendus Mathematique, 2008, 346, 1261-1266.	0.3	22
21	Renormalized energy of interacting Ginzburg-Landau vortex filaments. Journal of the London Mathematical Society, 2008, 77, 647-665.	1.0	3
22	Resonance and Interior Layers in an Inhomogeneous Phase Transition Model. SIAM Journal on Mathematical Analysis, 2007, 38, 1542-1564.	1.9	22
23	Concentration on curves for nonlinear Schrödinger Equations. Communications on Pure and Applied Mathematics, 2007, 60, 113-146.	3.1	135
24	Variational reduction for Ginzburg–Landau vortices. Journal of Functional Analysis, 2006, 239, 497-541.	1.4	27
25	Nonlinear Schrödinger equations: concentration on weighted geodesics in the semi-classical limit. Comptes Rendus Mathematique, 2005, 341, 223-228.	0.3	3
26	Singular limits in Liouville-type equations. Calculus of Variations and Partial Differential Equations, 2005, 24, 47-81.	1.7	161
27	Multi-bump ground states ofÂtheÂGierer–Meinhardt system in â"2. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2003, 20, 53-85.	1.4	31
28	Boundary spikes in the Gierer-Meinhardt system. Communications on Pure and Applied Analysis, 2002, 1, 437-456.	0.8	13
29	THE GIERER & MEINHARDT SYSTEM: THE BREAKING OF HOMOCLINICS AND MULTI-BUMP GROUND STATES. Communications in Contemporary Mathematics, 2001, 03, 419-439.	1.2	34